It is a false statement i.e. drift velocity is not same in the direction as the applied force.
Drift velocity of a current-carrying conductor can be explained as, the charges i.e. electrons do not flow in the same direction of current. In other word, in most cases the movement of the electrons is almost random, with a small net velocity. So that , the drift velocity, in the direction opposite to the electric field.
Drift velocity
is inversely proportional to the number of electron per unit volume of the conductor e. Therefore, the formulation can be given as ,
= σ E/ne
The above equation shows the drift velocity in a current carrying conductor
where,
is drift velocity , σ is the conductivity, E is electric force and n is number of electrons per unit volume of the conductor e.
Hence here we can say that, the drift velocity is not in the same direction as the applied force.
To know more about drift velocity
brainly.com/question/17167604
#SPJ4
Answer:
The amount of air resistance an object experiences depends on its speed, its cross-sectional area, its shape and the density of the air.
Explanation:
Answer:
Total energy produced 19135.362 MJ/year
Explanation:
given details:
total energy produced = 2090 Btu per hour
1 Btu = 1.055kJ
Total energy produced per year in mega joule is = 2090*1.055 *365*24
= 19315362 KJ/year
In mega joule per year 
mega joule per year = 19135.362 MJ/year
Answer:
The two positive electric charges repel each other. If a positive charge and a negative charge interact, their forces act in the same direction, from the positive to the negative charge. As a result opposite charges attract each other: The electric field and resulting forces produced by two electrical charges of opposite polarity.
Explanation:
Hope this helps!
-PBvibes
<3
Newtons first law - Objects in the car at rest (The human) will remain at rest unless affected by an unbalanced force. Well the unbalanced force would be the crash and this would set the human in motion and they would ether fly out the car if not wearing a seat belt or if wearing one they would get bad whip lash
Newtons second law - With more mass requires more force, so since the human is pretty light or even if heavy in a big crash there will be so much more from it that this will send the human flying.
Newtons 3rd law - Objects A puts force onto objects b and object b excretes the same amount of force back onto object a, so in a crash the human would hit the car hard and the car would excrete the same amount of force back on the human which would really damage him/her