Answer:
The answer is B
Explanation:
The answer is B because representative particles can only be atoms.
Answer:
0.544 M
Explanation:
First find the moles in the final solution
0.8 mols/L *1.7L
1.36 mols
so there is 1.36 mols in 2.5L
concentration will be 1.36/2.5
0.544 M
Answer:
A.
Explanation:
I chose this because it seems more reasonable . Because its in the air so im guess that its gravitational bc to stay on top of a hill you need balance . Im sorry if its wrong k . I tried .
Answer:
a) pH = 13.176
b) pH = 13
c) pH = 12.574
d) pH = 7.0
e) pH = 1.46
f) pH = 1.21
Explanation:
HBr + NaOH ↔ NaBr + H2O
∴ equivalent point:
⇒ mol acid = mol base
⇒ (Va)*(0.150mol/L) = (0.025L)*(0.150mol/L)
⇒ Va = 0.025 L
a) before addition acid:
⇒ <em>C </em>NaOH = 0.150 M
⇒ [ OH- ] = 0.150 M
⇒ pOH = - Log ( 0.150 )
⇒ pOH = 0.824
⇒ pH = 14 - pOH
⇒ pH = 13.176
b) after addition 5mL HBr:
⇒ <em>C </em>NaOH = (( 0.025)*(0.150) - (0.005)*(0.150)) / (0.025 + 0.005) = 0.1 M
⇒ <em>C </em>HBr = (0.005)*(0.150) / ( 0.03 ) = 0.025 M
⇒ [ OH- ] = 0.1 M
⇒ pOH = 1
⇒ pH = 13
c) after addition 15mL HBr:
⇒ <em>C </em>NaOH = ((0.025)*(0.150) - (0.015)*(0.150 ))/(0.04) = 0.0375 M
⇒ <em>C </em>HBr = ((0.015)*(0.150))/(0.04) = 0.0563 M
⇒ [ OH- ] = 0.0375 M
⇒ pOH = 1.426
⇒ pH = 12.574
d) after addition 25mL HBr:
equivalent point:
⇒ [ OH- ] = [ H3O+ ]
⇒ Kw = 1 E-14 = [ H3O+ ] * [ OH- ] = [ H3O+ ]²
⇒ [ H3O+ ] = 1 E-7
⇒ pH = 7.0
d) after addition 40mL HBr:
⇒ <em>C</em> HBr = ((0.04)*(0.150) - (0.025)*(0.150)) / (0.04 + 0.025) = 0.035 M
⇒ [ H3O+ ] = 0.035 M
⇒ pH = 1.46
d) after addition 60mL HBr:
⇒ <em>C</em> HBr = ((0.06)*(0.150) - (0.025)*(0.150)) / (0.06+0.025) = 0.062 M
⇒ [ H3O+ ] = 0.062 M
⇒ pH = 1.21