Just add more detail in the second experiment explain every little thing.
Answer:
a. 113 min
Explanation:
Considering the equilibrium:-
2N₂O₅ ⇔ 4NO₂ + O₂
At t = 0 125 kPa
At t = teq 125 - 2x 4x x
Thus, total pressure = 125 - 2x + 4x + x = 125 - 3x
125 - 3x = 176 kPa
x = 17 kPa
Remaining pressure of N₂O₅ = 125 - 2*17 kPa = 91 kPa
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
min⁻¹
Initial concentration
= 125 kPa
Final concentration
= 91 kPa
Time = ?
Applying in the above equation, we get that:-

Answer:
pH = 2.66
Explanation:
- Acetic Acid + NaOH → Sodium Acetate + H₂O
First we <u>calculate the number of moles of each reactant</u>, using the <em>given volumes and concentrations</em>:
- 0.75 M Acetic acid * 50.0 mL = 37.5 mmol acetic acid
- 1.0 M NaOH * 10.0 mL = 10 mmol NaOH
We<u> calculate how many acetic acid moles remain after the reaction</u>:
- 37.5 mmol - 10 mmol = 27.5 mmol acetic acid
We now <u>calculate the molar concentration of acetic acid after the reaction</u>:
27.5 mmol / (50.0 mL + 10.0 mL) = 0.458 M
Then we <u>calculate [H⁺]</u>, using the<em> following formula for weak acid solutions</em>:
- [H⁺] =

Finally we <u>calculate the pH</u>:
The statement which is true is
Fluorine is more reactive than nitrogen because fluorine needs only one electron to fill its outermost shell.
<u><em>Explanation</em></u>
Fluorine has electron configuration of 1S²2S²2P⁵ while nitrogen has 1S²2S²2P³ electron configuration.
The 2P sub shell for nitrogen is half filled therefore it is sable than fluorine.
since p orbital can hold a maximum of 6 electrons ,Fluorine requires 1 electron to completely fill it's 2P sub shell which make it more reactive than nitrogen.
Answer:

group 16 period 2 of the periodic table
note: that is not the electronic configuration, that is the Bohr model.