Answer:
a) The net force on the ball is instantaneously equal to zero newtons at the top of the flight path.
Explanation:
At an instantenous time at the top of the flight path, the upward force due to the Canon explosion on the ball is just equal to the weight of the ball, this will equate the net force on the ball to zero. At this point the velocity of the ball is zero before it decends down to earth under its own weight.
Answer:
the maximum length of specimen before deformation is found to be 235.6 mm
Explanation:
First, we need to find the stress on the cylinder.
Stress = σ = P/A
where,
P = Load = 2000 N
A = Cross-sectional area = πd²/4 = π(0.0037 m)²/4
A = 1.0752 x 10^-5 m²
σ = 2000 N/1.0752 x 10^-5 m²
σ = 186 MPa
Now, we find the strain (∈):
Elastic Modulus = Stress / Strain
E = σ / ∈
∈ = σ / E
∈ = 186 x 10^6 Pa/107 x 10^9 Pa
∈ = 1.74 x 10^-3 mm/mm
Now, we find the original length.
∈ = Elongation/Original Length
Original Length = Elongation/∈
Original Length = 0.41 mm/1.74 x 10^-3
<u>Original Length = 235.6 mm</u>
Answer:
a) 22.5number
b) 22.22 m length
Explanation:
Given data:
Bridge length = 500 m
width of bridge = 12 m
Maximum temperature = 40 degree C
minimum temperature = - 35 degree C
Maximum expansion can be determined as

where , \alpha is expansion coefficient
degree C
SO, 

number of minimum expansion joints is calculated as

b) length of each bridge

Answer:
1) free of contaminants, 2) alkaline, and 3) micro-clustered
Explanation:
Hope it helps you
Answer: 0.95 inches
Explanation:
A direct load on a column is considered or referred to as an axial compressive load. A direct concentric load is considered axial. If the load is off center it is termed eccentric and is no longer axially applied.
The length= 64 inches
Ends are fixed Le= 64/2 = 32 inches
Factor Of Safety (FOS) = 3. 0
E= 10.6× 10^6 ps
σy= 4000ps
The square cross-section= ia^4/12
PE= π^2EI/Le^2
6500= 3.142^2 × 10^6 × a^4/12×32^2
a^4= 0.81 => a=0.81 inches => a=0.95 inches
Given σy= 4000ps
σallowable= σy/3= 40000/3= 13333. 33psi
Load acting= 6500
Area= a^2= 0.95 ×0.95= 0.9025
σactual=6500/0.9025
σ actual < σallowable
The dimension a= 0.95 inches