1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
2 years ago
13

In what situation you would prefer to use a successive approximation ADC over flash ADC?

Engineering
1 answer:
Levart [38]2 years ago
8 0

Answer and Explanation:

Both both successive approximation normally known SAR type and flash type ADC are used for the conversion of analog signal to digital signal successive approximation type ADC are preferred over flash type when we need fix conversion time and better accuracy and if we have don/t matter with speed of the conversion because flash type has better speed of conversion than SAR type

You might be interested in
If we have silicon at 300K with 10 microns of p-type doping of 4.48*10^18/cc and 10 microns of n-type doping at 1000 times less
liq [111]

Answer:

The resistance is 24.9 Ω

Explanation:

The resistivity is equal to:

R=\frac{1}{N_{o}*u*V } =\frac{1}{4.48x10^{15}*1500*106x10^{-19}  } =0.93ohm*cm

The area is:

A = 60 * 60 = 3600 um² = 0.36x10⁻⁴cm²

w=\sqrt{\frac{2E(V_{o}-V) }{p}(\frac{1}{N_{A} }+\frac{1}{N_{D} })

If NA is greater, then, the term 1/NA can be neglected, thus the equation:

w=\sqrt{\frac{2E(V_{o}-V) }{p}(\frac{1}{N_{D} })

Where

V = 0.44 V

E = 11.68*8.85x10¹⁴ f/cm

V_{o} =\frac{KT}{p} ln(\frac{N_{A}*N_{D}}{n_{i}^{2}  } , if n_{i}=1.5x10^{10}cm^{-3}  \\V_{o}=0.02585ln(\frac{4.48x10^{18}*4.48x10^{15}  }{(1.5x10^{10})^{2}  } )=0.83V

w=\sqrt{\frac{2*11.68*8.85x10^{-14}*(0.83-0.44) }{1.6x10^{-19}*4.48x10^{15}  } } =3.35x10^{-5} cm=0.335um

The length is:

L = 10 - 0.335 = 9.665 um

The resistance is:

Re=\frac{pL}{A} =\frac{0.93*9.665x10^{-4} }{0.36x10^{-4} } =24.9ohm

7 0
3 years ago
Water is flowing at a rate of 0.15 ft3/s in a 6 inch diameter pipe. The water then goes through a sudden contraction to a 2 inch
Georgia [21]

Answer:

Head loss=0.00366 ft

Explanation:

Given :Water flow rate Q=0.15 \frac{ft^{3}}{sec}

         D_{1}= 6 inch=0.5 ft

        D_{2}=2 inch=0.1667 ft

As we know that Q=AV

A_{1}\times V_{1}=A_{2}\times V_{2}

So V_{2}=\frac{Q}{A_2}

     V_{2}=\dfrac{.015}{\frac{3.14}{4}\times 0.1667^{2}}

     V_{2=0.687 ft/sec

We know that Head loss due to sudden contraction

           h_{l}=K\frac{V_{2}^2}{2g}

If nothing is given then take K=0.5

So head lossh_{l}=(0.5)\frac{{0.687}^2}{2\times 32.18}

                                    =0.00366 ft

So head loss=0.00366 ft

4 0
3 years ago
public interface Frac { /** @return the denominator of this fraction */ int getDenom(); /** @return the numerator of this fracti
True [87]

Answer:

The Full details of the answer is attached.

7 0
3 years ago
Help..
iren [92.7K]

Answer:

7

Explanation:

A quotient is the answer to a division.For example,the quotient of 10 is 2 and 5 because 5÷10=2.

5 0
3 years ago
Given the vector current density J = 10rho2zarho − 4rho cos2 φ aφ mA/m2:
Xelga [282]

Answer:

(a) Current density at P is J(P)=180.\textbf{a}_{\rho}-9.\textbf{a}_{\phi} \ (mA/m^2)\\.

(b) Total current I is 3.257 A

Explanation:

Because question includes symbols and formulas it can be misunderstood. In the question current density is given as below;

J=10\rho^2z.\textbf{a}_{\rho}-4\rho(\cos\phi)^2\textbf{a}_{\phi}\\

where \textbf{a}_{\rho} and \textbf{a}_{\phi} unit vectors.

(a) In order to find the current density at a specific point <em>(P)</em>, we can simply replace the coordinates in the current density equation.  Therefore

J(P(\rho=3, \phi=30^o,z=2))=10.3^2.2.\textbf{a}_{\rho}-4.3.(\cos(30^o)^2).\textbf{a}_{\phi}\\\\J(P)=180.\textbf{a}_{\rho}-9.\textbf{a}_{\phi} \ (mA/m^2)\\

(b) Total current flowing outward can be calculated by using the relation,

I=\int {\textbf{J} \, \textbf{ds}

where integral is calculated through the circular band given in the question. We can write the integral as below,

I=\int\{(10\rho^2z.\textbf{a}_{\rho}-4\rho(\cos\phi)^2\textbf{a}_{\phi}).(\rho.d\phi.dz.\textbf{a}_{\rho}})\}\\\\I=\int\{(10\rho^2z).(\rho.d\phi.dz)\}\\\\\\

due to unit vector multiplication. Then,

I=10\int\(\rho^3z.dz.d\phi

where \rho=3,\ 0. Therefore

I=10.3^3\int_2^{2.8}\(zdz.\int_0^{2\pi}d\phi\\I=270(\frac{2.8^2}{2}-\frac{2^2}{2} )(2\pi-0)=3257.2\ mA\\I=3.257\ A

4 0
3 years ago
Other questions:
  • A gas stream contains 4.0 mol % NH3 and its ammonia content is reduced to 0.5 mol % in a packed absorption tower at 293 K and 10
    14·1 answer
  • A tank contains 350 liters of fluid in which 50 grams of salt is dissolved. Pure water is then pumped into the tank at a rate of
    8·1 answer
  • Which of the following is an example of a computer simulation?
    7·1 answer
  • The Aluminum Electrical Conductor Handbook lists a dc resistance of 0.01558 ohm per 1000 ft at 208C and a 60-Hz resistance of 0.
    11·1 answer
  • What is the Energy of moving things?<br><br> mechanical<br> sound<br> nuclear<br> Light
    13·2 answers
  • What else will change, if you change the point of view
    10·1 answer
  • Calculate the tensile modulus of elasticity for a laminated composite consisting of 62 percent by volume of unidirectional carbo
    8·1 answer
  • My teacher wants me to build a perpetual motion machine and present it. I know they don't exist, and SHE knows they don't exist
    12·2 answers
  • What are the horizontal structures beneath a slab that help transfer the load from the slab to the columns?
    14·2 answers
  • How many watts are consumed in a circuit having a power factor of 0. 2 if the input is 100 vac at 4 amperes?.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!