Answer:
The frequency that the sampling system will generate in its output is 70 Hz
Explanation:
Given;
F = 190 Hz
Fs = 120 Hz
Output Frequency = F - nFs
When n = 1
Output Frequency = 190 - 120 = 70 Hz
Therefore, if a system samples a sinusoid of frequency 190 Hz at a rate of 120 Hz and writes the sampled signal to its output without further modification, the frequency that the sampling system will generate in its output is 70 Hz
Answer: LED have the lowest cost of operation.
Explanation:
If we ignore the initial procurement cost of the items the operational cost of any device consuming electricity is given by

Among the three item's LED consumes the lowest power to give the same level of brightness as compared to the other 2 item's thus LED's shall have the lowest operational cost.
Maximum shear stress in the pole is 0.
<u>Explanation:</u>
Given-
Outer diameter = 127 mm
Outer radius,
= 127/2 = 63.5 mm
Inner diameter = 115 mm
Inner radius,
= 115/2 = 57.5 mm
Force, q = 0
Maximum shear stress, τmax = ?
τmax 
If force, q is 0 then τmax is also equal to 0.
Therefore, maximum shear stress in the pole is 0.
Answer:
W= 8120 KJ
Explanation:
Given that
Process is isothermal ,it means that temperature of the gas will remain constant.
T₁=T₂ = 400 K
The change in the entropy given ΔS = 20.3 KJ/K
Lets take heat transfer is Q ,then entropy change can be written as

Now by putting the values

Q= 20.3 x 400 KJ
Q= 8120 KJ
The heat transfer ,Q= 8120 KJ
From first law of thermodynamics
Q = ΔU + W
ΔU =Change in the internal energy ,W=Work
Q=Heat transfer
For ideal gas ΔU = m Cv ΔT]
At constant temperature process ,ΔT= 0
That is why ΔU = 0
Q = ΔU + W
Q = 0+ W
Q=W= 8120 KJ
Work ,W= 8120 KJ
Answer:
(a) lonic bonding
Explanation:
The Strongest chemical bond is the ionic bond ,
Because ionic bond is bound by strong electrostatic interactions ,
The ionic bond forms crystal lattice structure which are bounded by electrostatic interactions but the covalent bond is formed by the van der waal forces .
Hence , ionic bond is stronger than covalent bond .