Answer:
d= 4.079m ≈ 4.1m
Explanation:
calculate the shaft diameter from the torque, \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}
Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).
r = Radius of the shaft.
T = Twisting Moment or Torque.
J = Polar moment of inertia.
C = Modulus of rigidity for the shaft material.
l = Length of the shaft.
θ = Angle of twist in radians on a length.
Maximum Torque, ζ= τ × \frac{ π}{16} × d³
τ= 60 MPa
ζ= 800 N·m
800 = 60 × \frac{ π}{16} × d³
800= 11.78 × d³
d³= 800 ÷ 11.78
d³= 67.9
d= \sqrt[3]{} 67.9
d= 4.079m ≈ 4.1m
The current IDS is greater than 0 since the VGS has induced an inversion layer and the transistor is operating in the saturation region.
<u>Explanation:</u>
- Since
>
because
> Vt. - By the saturation region the MOSFET is operating.
- A specific source voltage and gate of NMOS, the voltage get drained during the specific level, the drain voltage is rises beyond where there is no effect of current during saturated region.
- MOSFET is a transistor which is a device of semiconductor vastly used for the electronic amplifying signals and switching in the devices of electronics.
- The core of this is integrated circuit.
- It is fabricated and designed in an individual chips due to tiny sizes.
Answer: C.) John Herschel
<u>I'm pretty sure your answer is B, because Sequential Control operates during order like a schedule</u>
Sequential Control=A control system in which the individual steps are processed in a predetermined order, progression from one sequence step to the next being dependent on defined conditions being satisfied.
Tell me if I'm incorrect but, Hope this helps!