As an egg falls towards the floor, it begins to travel faster and faster. When it slams into the floor, the egg is stopped almost immediately. This force of the floor against the eggshell is too large, so it breaks.
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

Answer:
4800N
Explanation:
Lets assume,
Mass of first object = m₁
Mass of second object = m₂
Distance between the two objects = r
Thus the force between the two objects will be

where, G = Universal gravitational constant
Given, F = 2400N
New mass of second object = 2m₂
Now, the force will be




Thus, F₂ = 4800N