1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harina [27]
3 years ago
8

Which is an example of a chemical change?

Physics
1 answer:
yulyashka [42]3 years ago
3 0
It’s burning wax. All of the other options are physical changes .
You might be interested in
All charged objects create an electric field around them. What two factors determine the strength of two electric fields upon th
V125BC [204]
-- The product of the magnitudes of the two charges.
-- The distance between the centers of the two charges.

The signs of the charges ... whether their signs are the same
or opposite ... determines the direction of the forces, but not
their magnitude.
3 0
3 years ago
4<br> Explica las características principales de las fuer-<br> zas de acción y reacción.
Naya [18.7K]
-Surgen de una interacción.
-Nunca aparece una sola: son dos y simultáneas.
-Actúan sobre cuerpos diferentes: una en cada cuerpo.
-Nunca forman un par de fuerzas: tienen la misma línea de acción.
-Un cuerpo que experimenta una única interacción no está en equilibrio, pues sobre el aparece una fuerza unica que lo acelera. Para estar en equilibrio se requieren por lo menos dos interacciones.




Las mas importantes son la 2,3,4 característica
5 0
3 years ago
Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+
babunello [35]

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

4 0
3 years ago
Why are there so few eclipses in 2014?
Sonbull [250]

Answer:

Because the Moon casts a smaller shadow than Earth does, eclipses of the Sun tightly constrain where you can see them. If the Moon completely hides the Sun, even for a moment, the eclipse is considered total.

Explanation:

8 0
3 years ago
Read 2 more answers
Which of the following is a false statement? Select one:
Art [367]

Answer:

The false statement is in option 'd': The center of mass of an object must lie within the object.

Explanation:

Center of mass is a theoretical point in a system of particles where the whole mass of the system is assumed to be concentrated.

Mathematically the position vector of center of mass is defined as

\overrightarrow{r}_{com}=\int \overrightarrow{r}_{i}dm

where,

\overrightarrow{r}_{i} is the position vector of the mass dm.

As we can see for homogenous symmetrical objects such as a sphere,cube,disc the center of mass is located at the centroid of the shapes itself but in many shapes it is located outside the body also.

Examples of shapes in which center of mass is located outside the body:

1) Horseshoe shaped body.

2) A thin ring.

In many cases we can make shapes of bodies whose center of mass lies outside the body.

6 0
3 years ago
Other questions:
  • When a tuning fork vibrates over an open pipe and the air in the pipe starts to vibrate, the vibrations in the tube are caused b
    6·2 answers
  • A 12-inch object is placed 30 inches in front of a plane mirror. A ray of light from the object strikes the mirror at a 45-degre
    5·2 answers
  • How does a Rivers ability to erode change with the seasons
    12·1 answer
  • A rock, which weighs 1400 n in air, has an apparent weight of 900 n when submerged in fresh water (998 kg/m3). the volume of the
    14·1 answer
  • Which of the following is a CHEMICAL factor affecting marine biomes?
    13·1 answer
  • A girl throws a stone from a bridge. Consider the following ways she might throw the stone. The speed of the stone as it leaves
    15·2 answers
  • True or false an hypothesis is a statement that describes how to measure a particular variable or define a particular term
    11·1 answer
  • Explain the bending of light as a property of a warping of space
    12·1 answer
  • A softball is hit into the outfield during a game. The initial velocity is 33.52 m/s, and the ball is hit at an angle of 27°. Ho
    10·1 answer
  • Help me for physics please
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!