Answer:
The final velocity is 
Explanation:
From the question we are told that
The mass of the child is 
The initial speed of the child is 
The mass of the wagon is 
The initial speed of the wagon is 
The mass of the ball is 
The initial speed off the ball is 
Generally the initial speed of the system (i.e the child , wagon , ball) is

Generally from the law of linear momentum conservation

Here
is the momentum of the system before the ball is dropped which is mathematically represented as

=> 
=> 
and
is the momentum of the system after the ball is dropped which is mathematically represented as

=> 
So

=> 
Complete Question
The diagram for this question is showed on the first uploaded image (reference homework solutions )
Answer:
The velocity at the bottom is 
Explanation:
From the question we are told that
The total distance traveled is 
The mass of the block is 
The height of the block from the ground is h = 0.60 m
According the law of energy

Where PE is the potential energy which is mathematically represented as

substituting values


So
KE is the kinetic energy at the bottom which is mathematically represented as

So

substituting values
=> 
=> 
=> 
Answer:
Explanation:
We shall write the velocities given in vector form to make the solution easy.
The velocity of water with respect to earth that is waV(e) makes 30 degree with north or 60 degree with east so in vector form
waV(e) = 2.2 cos 60 i + 2.2 sin 60 j
waV(e) = 1.1 i + 1.9 j
Similarly , velocity of wind with respect to earth that is wiV(e) , is making 50 degree with west or - ve of x axes so we cal write it in vector form as follows
wiV(e) = - 4.5 cos 50 i - 4.5 sin 50 j
wiV(e) = - 2.89 i - 3.45 j
Now we have to calculate velocity of wind with respect to water that is
wiVwa
wiV( wa) = wiV ( e)+ eV(wa)
= wiV( e)- waV(e)
- 2.89 i - 3.45 j - 1.1 i - 1.9 j
= - 3.99 i - 5.35 j
Magnitude of this relative velocity
D² = 3.99² + 5.35²
d = 6.67 m /s
Answer:
Same direction: t=234s; d=6.175Km
Opposite direction: t=27.53s; d=0.73Km
Explanation:
If the automobile and the train are traveling in the same direction, then the automobile speed relative to the train will be
(<em>the train must see the car advancing at a lower speed</em>), where
is the speed of the automobile and
the speed of the train.
So we have
.
So the train (<em>anyone in fact</em>) will watch the automobile trying to cover the lenght of the train L at that relative speed. The time required to do this will be:

And in that time the car would have traveled (<em>relative to the ground</em>):

If they are traveling in opposite directions, <u>we have to do all the same</u> but using
(<em>the train must see the car advancing at a faster speed</em>), so repeating the process:



They stay in place and vibrate.