Frequency = 1 / (2π√LC)
Frequency = 1 / (2π · 2.8 x 10⁻⁴ · C)
Frequency = 1 / (1.759 x 10⁻³ · C)
<em>Frequency = (568.4 / C) Hz.</em>
<em></em>
Energy stored in a capacitor = 1/2 C V²
Energy = 1/2 C · 2.25 x 10⁴
<em>Energy = (11,250 · C) Joules</em>
<em></em>
Neither of the answers can be completely specified without knowing the value of the capacitor.
The starting angle θθ of a pendulum does not affect its period for θ<<1θ<<1. At higher angles, however, the period TT increases with increasing θθ.
The relation between TT and θθ can be derived by solving the equation of motion of the simple pendulum (from F=ma)
−gsinθ=lθ¨−gainθ=lθ¨
For small angles, θ≪1,θ≪1, and hence sinθ≈θsinθ≈θ. Hence,
θ¨=−glθθ¨=−glθ
This second-order differential equation can be solved to get θ=θ0cos(ωt),ω=gl−−√θ=θ0cos(ωt),ω=gl. The period is thus T=2πω=2πlg−−√T=2πω=2πlg, which is independent of the starting angle θ0θ0.
For large angles, however, the above derivation is invalid. Without going into the derivation, the general expression of the period is T=2πlg−−√(1+θ2016+...)T=2πlg(1+θ0216+...). At large angles, the θ2016θ0216 term starts to grow big and cause
Answer:
The term "aerobic" refers to the body's ability to provide energy through the use of oxygen. The term anaerobic refers to the body's ability to provide energy without the use of oxygen.
An example of an aerobic exercise is swimming. An example of an anaerobic exercise is sprinting.
Explanation:
applied forces would be push for example.
normal forces would seem to be a force such as gravity.
friction for example when you try to slide on carpet but the fabric or whatever its made of stops you.