The total momentum of the players after collision is 130 kgm/s.
The given parameters:
- <em>Initial momentum of the returner, </em>
<em> = 0 kgm/s</em> - <em>The initial momentum of the diving player, </em>
<em> = 130 kgm/s</em>
The total momentum of the players after collision is determined by applying the principle of conservation of linear momentum as follows;

Thus, the total momentum of the players after collision is 130 kgm/s.
Learn more about conservation of linear momentum here: brainly.com/question/7538238
Answer:
F = 196 N
Explanation:
For this exercise we will use Newton's second law, we define a reference system with the x axis in the direction of movement of the stones and the y axis vertically
Y axis
N- W = 0
N = mg
X axis
F -fr = ma
In this case, they ask us for the force to keep moving, so the stones go at constant speed, which implies that the acceleration is zero.
F- fr = 0
F = fr
the friction force has the equation
fr = μ N
fr = μ mg
we substitute
F = μ mg
let's calculate
F = 0.80 9.8 25
F = 196 N
Sunlight (white light) refracts through droplets of water in the atmosphere and this causes a rainbow in the sky. The correct option among all the options that are given in the question is the third option or option "C". The rainbow is caused by the reflection, refraction and dispersion of sunlight in water droplets that are present in the atmosphere.
Answer:a substance with low ability or no ability to conduct energy
Explanation:
Answer:
a

b

Explanation:
From the question we are told that
The diameter of the Ferris wheel is 
The period of the Ferris wheel is 
The mass of the passenger is 
The apparent weight of the passenger at the lowest point is mathematically represented as

Where
is the centripetal force on the passenger, which is mathematically represented as

Where
is the angular velocity which is mathematically represented as

substituting values


and r is the radius which is evaluated as 
substituting values


So


W is the weight which is mathematically represented as


So


The apparent weight of the passenger at the highest point is mathematically represented as

substituting values

