Answer:
CH4+2O2-->2H2O+CO2 chemical reaction
Answer:
(a) Alkali metals: Francium (Fr)
(b) Chalcogens: Polonium (Po)
(c) Noble gases: Radon (Rn)
(d) Alkaline earth metals: Radium (Ra)
Explanation:
In the periodic table, the atomic mass increases down the group. Therefore, the last element of a group is the heaviest element of the group.
(a) alkali metals: The chemical elements that are present in group 1 of the periodic table, except hydrogen.
<u>The heaviest member of this group is francium (Fr)</u>
(b) chalcogens: The chemical elements that are present in group 16 of the periodic table
<u>The heaviest member of this group is polonium (Po)</u>
(c) noble gases: The chemical elements that are present in group 18 of the periodic table
<u>The heaviest member of this group is radon (Rn)</u>
(d) alkaline earth metals: The chemical elements that are present in group 2 of the periodic table.
<u>The heaviest member of this group is radium (Ra)</u>
I think c may be your anwser but im not too sure :/ srry if u get it wrong!
Answer:
I can't draw diagrams on this web site but I can do with numbers I think. So an electron is moved from n = 1 to n = 5. I'm assuming I've interpreted the problem correctly; if not you will need to make a correction. I'm assuming that you know the electron in the n = 1 state is the ground state so the 4th exited state moves it to the n = 5 level.
n = 5 4th excited state
n = 4 3rd excited state
n = 3 2nd excited state
n = 2 1st excited state
n = 1 ground state
Here are the possible spectral lines.
n = 5 to 4, n = 5 to 3, n = 5 to 2, n = 5 to 1 or 4 lines.
n = 4 to 3, 4 to 2, 4 to 1 = 3 lines
n = 3 to 2, 3 to 1 = 2 lines
n = 2 to 1 = 1 line. Add 'em up. I get 10.
b. The Lyman series is from whatever to n = 1. Count the above that end in n = 1.
c.The E for any level is -21.8E-19 Joules/n^2
To find the E for any transition (delta E) take E for upper n and subtract from the E for the lower n and that gives you delta E for the transition.
So for n = 5 to n = 1, use -Efor 5 -(-Efor 1) = + something which I'll leave for you. You could convert that to wavelength in meters with delta E = hc/wavelength. You might want to try it for the Balmer series (n ending in n = 2). I think the red line is about 650 nm.
Explanation:
<span>Acids are substances which produce hydrogen ions in solution.Bases are substances which produce hydroxide ions in solution.</span>