Movement of molecules from an area of higher concentration to one of lower concentration is called Diffusion
Answer : The balanced chemical equation is,

Explanation :
Rules for the balanced chemical equation in basic solution are :
- First we have to write into the two half-reactions.
- Now balance the main atoms in the reaction.
- Now balance the hydrogen and oxygen atoms on both the sides of the reaction.
- If the oxygen atoms are not balanced on both the sides then adding water molecules at that side where the more number of oxygen are present.
- If the hydrogen atoms are not balanced on both the sides then adding hydroxide ion
at that side where the less number of hydrogen are present. - Now balance the charge.
The half reactions in the basic solution are :
Reduction :
......(1)
Oxidation :
.......(2)
Now multiply the equation (1) by 2 and then added both equation, we get the balanced redox reaction.
The balanced chemical equation in a basic solution will be,

<span>acceleration I think.</span>
Cocoa butter, the fat in chocolate, can crystallize in any one of 6 different forms (polymorphs, as they are called). Unfortunately, only one of these, the beta crystal (or Form V), hardens into the firm, shiny chocolate that cooks want. Form VI is also a stable hard crystal, but only small amounts of it form from the good beta (Form V) crystals upon lengthy standing. When you buy commercial chocolate it is in the form of beta crystals.
When you melt chocolate and get it above 94° F, you melt these much desired beta crystals and other types of crystals can set up. If you simply let melted chocolate cool, it will set up in a dull, soft, splotchy, disgusting-looking form. Even the taste is different. Fine chocolate has a snap when you break it and a totally different mouthfeel from the other cocoa butter forms.
<em><u>hope</u></em><em><u> </u></em><em><u>it's </u></em><em><u>help </u></em><em><u>you</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>! </u></em>
<em><u>please </u></em><em><u>mark </u></em><em><u>as </u></em><em><u>brain </u></em><em><u>list</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>! </u></em>
<em><u>#</u></em><em><u>rishu</u></em>
Answer:
The answer is C. The high solvation energy for LI+
Explanation:
LiF has lower solubility because of the high solvation energy of Li+ ion. This is due to the smaller size and very big charge compared to Cs+ ion which has a bigger size and solvent molecules easily surround it.
Solvation energy is simply the amount energy that is required to make a solute dissolve in a solvent.