Answer:
4 biological membranes.
Explanation:
So in total, your water molecule has to go through your cell membrane, reach the outer membrane of your chloroplast and then through the inner membrane, and then lastly, it has to go through your thylakoid membrane to reach its final destination of the illumine. So in total 4 biological membranes.
For the answer to the questions above,
a) Ag2CO3(s) => Ag2O(s)+CO2(g)
<span>b) Cl2(g)+2(KI)(aq) => I2(s)+2(KCl)(aq) (coefficients are for balanced equation) </span>
<span>net ionic is Cl2(g)+2I- => I2(s)+2Cl-(aq) </span>
<span>c) I2(s)+3(Cl2)(g)=>2(ICl3)
</span>I hope I helped you with your problem
Because cl atoms are bonded with hydrogen. hydrogen bond is very strong bond
Answer : The concentration of guanosine in your sample is, 
Explanation :
Using Beer-Lambert's law :

where,
A = absorbance of solution = 0.70
C = concentration of solution = ?
l = path length = 1.00 cm
= molar absorptivity coefficient guanosine = 
Now put all the given values in the above formula, we get:


Thus, the concentration of guanosine in your sample is, 
True. A gas does not have a definite volume. Therefore, making this statement correct. <span />