Explanation:
when one reactants is in excess, there will always be some left over. The other reactants becomes limiting factor and controls show much of each product is produced.while using excess percentage yields this is at the expense of atom economy.
Answer:
The final dilution is 1:400
Explanation:
Let's analyze what we are told: we have an initial 1:5 dilution of protein lysate. This means that the initial solution (stock solution) was diluted 5 times. Then, from this dilution the student prepared another dilution taking 2 mL of the first dilution in 8 mL of water. This is the same as saying we took 1 mL of first dilution in 4 mL of water (the ratio is the same), so we now have a second 1:4 dilution of the first dilution (1:5). Finally, the student made a third 1:20 dilution, this means that the second dilution was further diluted 20 times.
So, to calculate the final dilution of protein lysate, we have to multiply all the dilution factors of every dilution prepared: in this case we have a final dilution of 1:20, this means we have a factor dilution of 20. But it was previously diluted 4 times, so we have a factor dilution of 20×4 = 80. However, this dilution was also previously diluted 5 times, so the new dilution factor is 80 × 5 = 400
This means that the final dilution of the compound was diluted a total of 400 times compared to the initial concentration of stock solution.
Answer:
Solution - (a) Brine . Suspension - (c) sand and water, (g) chalk and water Colloid - (e) air, (f) smoke , (d) soda , (b) milk
Explanation:
A solution is an homogeneous mixture of two or more compounds.
A suspension is a heterogeneous mixture of two or more compounds while a colloid is a homogeneous mixture of two or more compounds with suspended particles which do not settle.
So, under these definitions, the classifications are as follows-
Solution - (a) Brine .
Suspension - (c) sand and water, (g) chalk and water
Colloid - (e) air, (f) smoke , (d) soda , (b) milk
Description:
<span>"0.0400 mol of H2O2 decomposed into 0.0400 mol of H2O and 0.0200 mol of O2."
This means that a certain amount of H2O2 (0.0400 mol) decomposed or was broken down into two components, 0.04 mol of H2O and 0.02 mol of O2. To examine the system, we need a balanced equation:
H2O2 ---> H2O + 0.5O2
The final concentrations of the system indicates that the system is in equilibrium. </span>