<u>Answer:</u> The equilibrium concentration of
is 1.285 M.
<u>Explanation:</u>
The chemical equation for the decomposition of phosphorus pentachloride follows:

The expression for equilibrium constant is given as:
![K_c=\frac{[PCl_3][Cl_2]}{[PCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D)
We are given:

![[PCl_3]=0.18M](https://tex.z-dn.net/?f=%5BPCl_3%5D%3D0.18M)
![[Cl_2]=0.30M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D0.30M)
The concentration of solid substances are taken to be 1. Thus, they do not appear in the equilibrium constant expression.
Putting values in above equation, we get:
![0.042=\frac{0.18\times 0.30}{[PCl_5]}](https://tex.z-dn.net/?f=0.042%3D%5Cfrac%7B0.18%5Ctimes%200.30%7D%7B%5BPCl_5%5D%7D)
![[PCl_5]=1.285](https://tex.z-dn.net/?f=%5BPCl_5%5D%3D1.285)
Hence, the equilibrium concentration of
is 1.285 M.
In a mechanical cycle, mechanical energy (mostly the the rotation) is used to get the desired result. The form of energy remains the same.
<span>In a thermodynamic cycle heat is converted to mechanical energy. That is to say there is conversion of energy.</span>
Some physical properties that a pencil would have is, color, density, texture, hardness (in this case the lead is soft). phase (liquid,solid gas), shape, size. physical properties describe the look and feel of a substance. I hope this helps
Something that melts, something that changes shapes (for instance, play dough being squished), something that boils, something being mixed or dissolved (but only if it doesn't chemically react), etc. A physical change is a change of state of matter.
<span>Answer:
it shows that 1mol mCPHA provides the oxygens to 1 mol of propene, to make 1 mole of C3H6O
so: 1 mol C3H6 & 1 mol mCPHA --> 1 mol C3H6O
using molar masses, that equation becomes:
42.08grams C3H6 & 172.57grams mCPHA --> 58.08grams C3H6O
which is: 42.08 kg C3H6 & 172.57 kg mCPHA --> 58.08 kg C3H6O
to produce 1 kg of C3H6O, this becomes:
42.08 / 58.08 kg C3H6 & 172.57 / 58.08 kg mCPHA --> 58.08 /58.08 kg C3H6O
which is: 0.72452 kg C3H6 & 2.9712 kg mCPHA --> 1 kg C3H6O
but because the reaction gives only a 96% yield,
we scale up the reactants to get that desired 1 kg of C3H6O
(0.72452 kg ) (100/96) C3H6 & (2.9712 kg) (100/96) mCPHA --> 1 kg C3H6O
which is: 0.75471 kg C3H6 & 3.095 kg mCPHA --> 1 kg C3H6O
=========
costs per kg of C3H6O produced:
(0.75471 kg C3H6) ($10.97 per kg) = $8.279
(3.095 kg mCPHA) ($5.28 per kg) = $16.342
&
(0.75471 kg C3H6) / (0.0210 kg C3H6 / L dichloromethane) = 35.939 Litres dichloromethane
(35.939 Litres dichloromethane) ($2.12 per L) = $ 76.19
&
waste disposal is $5.00 per kilogram of propene oxide produced
total cost, disregarding labor,energy, & facility costs:
$8.279 & $16.342 & $ $ 76.19 & $5.00 = $105.81 per kg C3H6O produced
==========
profit: ($258.25 / kg C3H6O) - ($105.81 cost per kg) = $152.44 profit /kg
“Calculate the profit from producing 75.00kg of propene oxide”
(75.00kg) ($152.44 /kg) = $11,433
that answer rounded off to four sig figs, is $11,430</span>