False, atoms can not be created that way
I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
There is 6 non - bonding pairs.
Let me show you one easy method to do this.
o22-, oxygen valence electron = 6 here we have two so total 12, and -2 that means we add electrons so it’s all equal to 14 right.
whenever need to find lone pair, subtract the number you get with the lowest multiple of 8.
here we total 14 valence electron right so lowest multiple of 8 would be 8.
so 14 - 8 = 6 and that is our answer.
Let me know if you have Problem with chemistry.
Answer:
Option D. Al is above H on the activity series.
Explanation:
The equation for the reaction is given below:
2Al + 6HBr —> 2AlBr₃ + 3H₂
The activity series gives us a background understanding of the reactivity of elements i.e how elements displace other elements when present in solution.
From the activity series of metals, we understood that metal higher in the series will displace those lower in the series.
Considering the equation given above, Al is higher than H in the activity series. Thus, the reaction will proceed as illustrated by the equation.
Therefore, we can conclude that the reaction will only occur if Al is higher than H in the activity series.
A frequency of 60 MHz is close to the lower end of the old VHF-TV band.
c = f λ ...... where c is the speed of light, f is the frequency and λ is the wavelength
λ = c / f = 3.00x10^8 m/s / 6.0x10^7 1/s
λ = 5.0 m