Answer:


Explanation:
Density can be found by dividing the mass by the volume.

The mass is 5.28 grams and the volume is 2 cubic centimeters.

Substitute the values into the formula.

Divide.

The density of the unknown substance is 2.64 grams per cubic centimeter.
The density of a diamond is about 3.5 grams per cubic centimeter. Since 2.64 is not equal to 3.5, the unknown substance is not a diamond.
We know there’s a change in momentum due to a force applied over a time interval. Ft= m[v(final)-v(initial)]. Now simply plug in know values: (45)(0.02)=.005[v(final)-0]. Remember converting grams to kilograms. Solve for v final
Answer:
Explanation:
a. Landing height is
H=1.3m
Velocity of lander relative to the earth is, i.e this is the initial velocity of the spacecraft
u=1.3m/s
Velocity of lander at impact, i.e final velocity is needed
v=?
The acceleration due to gravity is 0.4 times that of the one on earth,
Then, g on earth is approximately 9.81m/s²
Then, g on Mars is
g=0.4×9.81=3.924m/s²
Then using equation of motion for a free fall body
v²=u²+2gH
v²=1.3²+2×3.924×1.3
v²=1.69+10.2024
v²=11.8924
v=√11.8924
v=3.45m/s
The impact velocity of the spacecraft is 3.45m/s
b. For a lunar module, the safe velocity landing is 3m/s
v=3m/s.
Given that the initial velocity is 1.2m/s²
We already know acceleration due to gravity on Mars is g=3.924m/s²
The we need to know the maximum height to have a safe velocity of 3m/s
Then using equation of motion
v²=u²+2gH
3²=1.2²+2×3.924H
9=1.44+7.848H
9-1.44=7.848H
7.56=7.848H
H=7.56/7.848
H=0.963m
The the maximum safe landing height to obtain a final landing velocity of 3m/s is 0.963m
Periscope i believe but i may be wrong.
Answer:

Explanation:
The momentum of a body is defined as the product of its mass and its velocity at a given time. Therefore the change in the momentum of the ball is given by the difference between the final momentum and the initial momentum:
