PART A)
Equivalent resistance in parallel is given as

now we have


PART B)
since potential difference across all resistance will remain same as all are in parallel
so here we can use ohm's law

As we know i = 7 A current flows through 15 ohm resistance

PART C)
Similarly ohm's law for 20 ohm resistance we can say



My answer to this question honestly is no
Answer:
The location of helicopter is behind the packet.
Explanation:
As the packet also have same horizontal velocity as same as the helicopter, and also it has some vertical velocity as it hits the ground.
The horizontal velocity remains same as there is no force in the horizontal direction. The vertical velocity goes on increasing as acceleration due to gravity acts.
So, the helicopter is behind the packet.
Answer:
The force is 272.73 newtons
Explanation:
We're going to use impulse-momentum theorem that states impulse is the change on the linear momentum this is:
(1)
Impulse is also defined as average force times the time the force is applied:
(2)
By (2) on (1):

solving for
:
(3)
We already know Δt is equal to 0.22 s, all we should do now is to find
and put on (3) (
the initial momentum and
the final momentum). Linear momentum is defined as
, using that on (3):
(4)
Velocity (v) are vectors so direction matters, if positive direction is the right direction and negative direction left
and
so (4) becomes:

(5)
Using (5) on (3):


The period of the pendulum is directly proportional to the square root of the length of the pendulum
Explanation:
The period of a simple pendulum is given by the equation

where
T is the period
L is the length of the pendulum
g is the acceleration of gravity
From the equation, we see that when the length of the pendulum increases, the period of the pendulum increases as the square root of L,
. This means that
The period of the pendulum is directly proportional to the square root of the length of the pendulum
From the equation, we also notice that the period of a pendulum does not depend on its mass.
#LearnwithBrainly