Amplitude is affected by the energy wave in the instrument. High energy wave means high amplitude and low energy wave means low amplitude.
<u>Explanation:</u>
The amplitude of a periodic variable is a measure of its change over a single period. There are various definitions of amplitude, which are all functions of the magnitude of the differences between the variable's extreme values.
The amount of energy carried by a wave is related to the amplitude of the wave. Amplitude of an instrument is directly affected by the wave of the energy in the instruments. High energy wave means high amplitude and low energy wave means low amplitude in the instrument.
<span>(a)
Taking the angle of the pitch, 37.5°, and the particle's initial velocity, 18.0 ms^-1, we get:
18.0*cos37.5 = v_x = 14.28 ms^-1, the projectile's horizontal component.
(b)
To much the same end do we derive the vertical component:
18.0*sin37.5 = v_y = 10.96 ms^-1
Which we then divide by acceleration, a_y, to derive the time till maximal displacement,
10.96/9.8 = 1.12 s
Finally, doubling this value should yield the particle's total time with r_y > 0
<span>2.24 s
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span></span>
Answer:
1.35 kJ
Explanation:
KE = ½mv² = ½ × 0.030 kg × (300 m·s⁻¹)² = 1350 J = 1.35 kJ
Answer:
304.89m
Explanation:
Given
acceleration a = 2.52m/s²
final speed v = 39.2m/s
initial speed = 0m/s (car accelerates from rest)
Using the equation of motion below to get the distance of Doc brown from Marty;
v² = u²+2as
substitute the given parameters
39.2² = 0²+2(2.52)s
1536.64 = 0+5.04s
divide both sides by 5.04
1536.64/5.04 = 5.04s/5.04
rearrange the equation
5.04s/5.04 = 1536.64/5.04
s = 304.89m
Hence He and Marty must stand at 304.89m to allow the car to accelerate from rest to a speed of 39.2 m/s?