keeping in mind that anything raised at the 0 power, is 1, with the sole exception of 0 itself.
![\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{(r^{-7}b^{-8})^0}{t^{-4}w}\implies \cfrac{1}{t^{-4}w}\implies \cfrac{1}{t^{-4}}\cdot \cfrac{1}{w}\implies t^4\cdot \cfrac{1}{w}\implies \cfrac{t^4}{w}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bnegative%20exponents%7D%0A%5C%5C%5C%5C%0Aa%5E%7B-n%7D%20%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5En%7D%0A%5Cqquad%20%5Cqquad%0A%5Ccfrac%7B1%7D%7Ba%5En%7D%5Cimplies%20a%5E%7B-n%7D%0A%5Cqquad%20%5Cqquad%20a%5En%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5E%7B-n%7D%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Ccfrac%7B%28r%5E%7B-7%7Db%5E%7B-8%7D%29%5E0%7D%7Bt%5E%7B-4%7Dw%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Bt%5E%7B-4%7Dw%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Bt%5E%7B-4%7D%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bw%7D%5Cimplies%20t%5E4%5Ccdot%20%5Ccfrac%7B1%7D%7Bw%7D%5Cimplies%20%5Ccfrac%7Bt%5E4%7D%7Bw%7D%20)
Answer:
$102
Step-by-step explanation:
34x3=102
34+34+34=102
There are three people total, each paid 34. Add each person's total to the others, or multiply by three.
Answer:
Area of nail's head = 28.26 millimeter² (Approx.)
Step-by-step explanation:
Given:
Head of nail is circular
Diameter of nail's head = 6 millimeter
Find:
Area of nail's head
Computation:
Radius of nail's head = Diameter / 2
Radius of nail's head = 6 / 2
Radius of nail's head = 3 millimeter
Area of circle = πr²
Area of nail's head = πr²
Area of nail's head = (22/7)(3)²
Area of nail's head = (22/7)(9)
Area of nail's head = (3.14)(9)
Area of nail's head = 28.26 millimeter² (Approx.)
Answer:
x = 1/9m good luck........
Answer:
$110.37
Step-by-step explanation:
Assuming the monthly payment is made at the beginning of the month, the formula for the monthly payment P that gives future value A will be ...
... A = P(1+r/12)((1+r/12)^(nt) -1)/(r/12) . . . . n=compoundings/year, t=years
... 14000 = P(1+.11/12)((1+.11/12)^(12·7) -1)/(.11/12)
... 14000 = P(12.11)((1+.11/12)^84 -1)/0.11 ≈ P·126.84714 . . . . fill in the given values
... P = 14000/126.84714 = 110.37 . . . . . divide by the coefficient of P
They should deposit $110.37 at the beginning of each month.