Answer:
The new period of rotation using the new spring would be less than the period of rotation using the original spring
Explanation:
Generally the period of rotation of the mass is mathematically represented as

Here I is the moment of inertia of the mass about the rotation axis and k is the spring constant
Now looking at the equation we can tell that T is inversely proportional to the square root of the spring constant which means that for a larger spring constant the time period would be lesser
Answer:
284.4233 N/m
Explanation:
k = Spring constant
x = Compression of spring = 14.5 cm
U = Potential energy = 2.99 J
The potential energy of a spring is given by

Rearranging to get the value of k

The spring constant is 284.4233 N/m
Answer:
The phase angle is 0.0180 rad.
(c) is correct option.
Explanation:
Given that,
Voltage = 12 V
Angular velocity = 50 Hz
Capacitance 
Inductance 
Resistance 
We need to calculate the impedance
Using formula of impedance



We need to calculate the phase angle
Using formula of phase angle



Hence, The phase angle is 0.0180 rad.
how does the electric force between two charged particles change if the distance between them is increased by a factor of 3?
a. it is reduced by a factor of 3