Answer:
The width of the slit is 0.4 mm (0.00040 m).
Explanation:
From the Young's interference expression, we have;
(λ ÷ d) = (Δy ÷ D)
where λ is the wavelength of the light, D is the distance of the slit to the screen, d is the width of slit and Δy is the fringe separation.
Thus,
d = (Dλ) ÷ Δy
D = 3.30 m, Δy = 4.7 mm (0.0047 m) and λ = 563 nm (563 ×
m)
d = (3.30 × 563 ×
) ÷ (0.0047)
= 1.8579 ×
÷ 0.0047
= 0.0003951 m
d = 0.00040 m
The width of the slit is 0.4 mm (0.00040 m).
A. Food chain
A food web also shows the flow of energy and materials through an ecosystem but in a complex web, not a single chain. A biogeochemical cycle does not deal with the flow of energy/materials through an ecosystem at all.
Answer:
6.26 m/s
Explanation:
Pretty slow.... the PE (Potential Energy) at 2m will be converted to KE (Kinetic Energy) at the bottom of the track (neglecting friction)
PE = KE
mgh = 1/2 mv^2 divide both sides of the equation by 'm'
gh = 1/2 v^2 multiply both sides by 2
2 gh = v^2 take sqrt of both sides
v = sqrt ( 2gh) = sqrt ( 2*9.81*2) = 6.26 m/s
Step-#1:
Ignore the wire on the right.
Find the strength and direction of the magnetic field at P,
caused by the wire on the left, 0.04m away, carrying 5.0A
of current upward.
Write it down.
Step #2:
Now, ignore the wire on the left.
Find the strength and direction of the magnetic field at P,
caused by the wire on the right, 0.04m away, carrying 8.0A
of current downward.
Write it down.
Step #3:
Take the two sets of magnitude and direction that you wrote down
and ADD them.
The total magnetic field at P is the SUM of (the field due to the left wire)
PLUS (the field due to the right wire).
So just calculate them separately, then addum up.