Moment of force. Hope this helped
Answer: option 1 : the electric potential will decrease with an increase in y
Explanation: The electric potential (V) is related to distance (in this case y) by the formulae below
V = kq/y
Where k = 1/4πε0
Where V = electric potential,
k = electric constant = 9×10^9,
y = distance of potential relative to a reference point, ε0 = permittivity of free space
q = magnitude of electronic charge = 1.609×10^-19 c
From the formulae, we can see that q and k are constants, only potential (V) and distance (y) are variables.
We have that
V = k/y
We see the potential(V) is inversely proportional to distance (y).
This implies that an increase in distance results to a decreasing potential and a decrease in distance results to an increase in potential.
This fact makes option 1 the correct answer
As we know that acceleration is directly proportional to force, therefore as the force is doubled, acceleration gets doubled too.
Answer:
Established in 1972 by the McMahon Government, the institute's primary function is research for sustainable use and protection of the marine environment. The Institute investigates topics from broad-scale ecology to microbiology.
Answer:
I'm Pretty sure the answer your looking for is C