E=hf C=wavelength*F
E=hC/wavelength
E=(6.626*10^-34)*(3.00*10^8)/670*10^-9
E=(6.626*10^-34)*(3.00*10^8)/450*10^-9
Refer to the diagram shown below.
Still-water speed = 9.5 m/s
River speed = 3.75 m/s down stream.
The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.
The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s
The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°
Answer: 10.2 m/s at 21.5° downstream.
Answer:
it will disperse into many different colors
Answer:
-4*10⁴ units.
Explanation:
As the metal rod was initially neutral (which means that it has the same quantity of positive and negative charges), after being close to the charged sphere, as charge must be conserved, the total charge of the metal rod must still remain to be zero.
So, if due to the influence of the negative charge in the sphere, the half of the road closer to the sphere has a surplus charge of +4*10⁴ units, the charge on the half of the rod farther from the sphere must be the same in magnitude but of the opposite sign, i.e., -4*10⁴ units.
Close the switch would be the correct answer