This item is solved through the concept of the conservation of momentum which states that the momentum before and after collision should be equal.
momentum = mass x velocity
(1,600 kg)(16 m/s) + (1.0x10^3 kg)(10 m/s) = (1600 + 1000 kg)(x)
The value of x is 13.69 m/s. Thus, their final speed is approximately letter D. 14 m/s.
Answer:
201.6 N
Explanation:
m = mass of disk shaped merry-go-round = 125 kg
r = radius of the disk = 1.50 m
w₀ = Initial angular speed = 0 rad/s
w = final angular speed = 0.700 rev/s = (0.700) (2π) rad/s = 4.296 rad/s
t = time interval = 2 s
α = Angular acceleration
Using the equation
w = w₀ + α t
4.296 = 0 + 2α
α = 2.15 rad/s²
I = moment of inertia of merry-go-round
Moment of inertia of merry-go-round is given as
I = (0.5) m r² = (0.5) (125) (1.50)² = 140.625 kgm²
F = constant force applied
Torque equation for the merry-go-round is given as
r F = I α
(1.50) F = (140.625) (2.15)
F = 201.6 N
I hope it is clearly visible.. Velocity of the center of mass of 2-ball system is - 11.54m/s. Minus indicates, velocity direction is in downward direction.
Answer:
3.64×10⁸ m
3.34×10⁻³ m/s²
Explanation:
Let's define some variables:
M₁ = mass of the Earth
r₁ = r = distance from the Earth's center
M₂ = mass of the moon
r₂ = d − r = distance from the moon's center
d = distance between the Earth and the moon
When the gravitational fields become equal:
GM₁m / r₁² = GM₂m / r₂²
M₁ / r₁² = M₂ / r₂²
M₁ / r² = M₂ / (d − r)²
M₁ / r² = M₂ / (d² − 2dr + r²)
M₁ (d² − 2dr + r²) = M₂ r²
M₁d² − 2dM₁ r + M₁ r² = M₂ r²
M₁d² − 2dM₁ r + (M₁ − M₂) r² = 0
d² − 2d r + (1 − M₂/M₁) r² = 0
Solving with quadratic formula:
r = [ 2d ± √(4d² − 4 (1 − M₂/M₁) d²) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − (1 − M₂/M₁)) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − 1 + M₂/M₁) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(M₂/M₁) ] / 2 (1 − M₂/M₁)
When we plug in the values, we get:
r = 3.64×10⁸ m
If the moon wasn't there, the acceleration due to Earth's gravity would be:
g = GM / r²
g = (6.672×10⁻¹¹ N m²/kg²) (5.98×10²⁴ kg) / (3.64×10⁸ m)²
g = 3.34×10⁻³ m/s²
Answer:
the action of investigating something or someone; formal or systematic examination or research.
Explanation:
This definition is provided by Oxford Languages