Answer:
12.6 m/s
Explanation:
We know that the linear speed v = rω where r = radius and ω = angular acceleration. Given that ω = 62.8 rad/s and r = 20 cm from center = 0.2 cm
So, v = rω
= 0.2 m × 62.8 rad/s
= 12.56 m/s
≅12.6 m/s
a)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = final position of stone = 20.0 meters
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = ?
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
v² = 30² + 2 (- 9.8) (20 - 0)
v = 22.5 m/s
b)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = maximum height gained
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = 0 m/s
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
0² = 30² + 2 (- 9.8) (Y - 0)
Y = 46 m
The frequency, f, of a wave is the number of waves passing a point in a certain time. We normally use a time of one second, so this gives frequency the unit hertz (Hz), since one hertz is equal to one wave per second.