Answer is: Ksp for calcium sulfate is 2.36·10⁻⁴.
Balanced chemical reaction (dissociation):
CaSO₄(s) → Ba²⁺(aq) + SO₄²⁻(aq).
m(CaSO₄) = 0.209 g.
n(CaSO₄) = m(CaSO₄) ÷ M(CaSO₄).
n(CaSO₄) = 0.209 g ÷ 136.14 g/mol.
n(CaSO₄) = 0.00153 mol.
s(CaSO₄) = n(CaSO₄) ÷ V(CaSO₄).
s(CaSO₄) = 0.00153 mol ÷ 0.1 L = 0.0153 M.
Ksp = [Ca²⁺] · [SO₄²⁻].
[Ca²⁺] = [SO₄²⁻] = s(CaSO₄).
Ksp = (0.0153 M)² = 2.36·10⁻⁴.
Answer : The ionic equation will be:

Explanation :
Neutralization reaction : It is a type of chemical reaction in which an acid react with a base to give salt and water as a product that means it reacts to give a neutral solution.
When baking soda (sodium hydrogen carbonate) base react with lactic acid then it react to gives sodium lactate, carbon dioxide and water as a product.
The balanced chemical reaction will be:

The ionic equation will be:

Tentacles with stinging cells, 2 body layers (ectoderm & endoderm), radially symmetric
Answer:
The final temperature was 612 °C
Explanation:
Charles's law relates the volume and temperature of a certain amount of ideal gas, maintained at a constant pressure, using a constant of direct proportionality. In this law, Charles says that at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. That is, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

When you want to study two different states, an initial and a final one of a gas and evaluate the change in volume as a function of temperature or vice versa, you can use the expression:

In this case:
- V1= 5.76 L
- T1= 22 °C= 295 °K (Being 0°C=273°K)
- V2=17.28 L
- T2=?
Replacing:

Solving:

T2= 885 °K = 612 °C
<u><em>The final temperature was 612 °C</em></u>