Answer:
Reagent O₂ will be consumed first.
Explanation:
The balanced reaction between O₂ and C₄H₁₀ is:
2 C₄H₁₀ + 13 O₂ → 8 CO₂ + 10 H₂O
Then, by reaction stoichiometry, the following amounts of reactants and products participate in the reaction:
- C₄H₁₀: 2 moles
- O₂: 13 moles
- CO₂: 8 moles
- H₂O: 10 moles
Being:
- C: 12 g/mole
- H: 1 g/mole
- O: 16 g/mole
The molar mass of the compounds that participate in the reaction is:
- C₄H₁₀: 4*12 g/mole + 10*1 g/mole= 58 g/mole
- O₂: 2*16 g/mole= 32 g/mole
- CO₂: 12 g/mole + 2*16 g/mole= 44 g/mole
- H₂O: 2*1 g/mole + 16 g/mole= 18 g/mole
Then, by reaction stoichiometry, the following mass quantities of reactants and products participate in the reaction:
- C₄H₁₀: 2 moles* 58 g/mole= 116 g
- O₂: 13 moles* 32 g/mole= 416 g
- CO₂: 8 moles* 44 g/mole= 352 g
- H₂O: 10 moles* 18 g/mole= 180 g
If 78.1 g of O₂ react, it is possible to apply the following rule of three: if by stoichiometry 416 g of O₂ react with 116 g of C₄H₁₀, 62.4 g of C₄H₁₀ with how much mass of O₂ do they react?

mass of O₂= 223.78 grams
But 21.78 grams of O₂ are not available, 78.1 grams are available. Since you have less mass than you need to react with 62.4 g of C₄H₁₀, <u><em>reagent O₂ will be consumed first.</em></u>
Answer:
6.46 × 10⁻¹¹ M
Explanation:
Step 1: Given data
pH of the solution: 3.81
Step 2: Calculate the pOH of the solution
We will use the following expression.
pH + pOH = 14.00
pOH = 14.00 - pH = 14.00 - 3.81 = 10.19
Step 3: Calculate the concentration of OH⁻ ions
We will use the definition of pOH.
pOH = -log [OH⁻]
[OH⁻] = antilog -pOH = antilog -10.19 = 6.46 × 10⁻¹¹ M
Answer:
Explanation:
idk why all u guys like trump who do.. hes just a big pain in the a*s.
Answer:
696 h
Explanation:
Let's consider the reduction of Cr³⁺.
Cr³⁺(aq) + 3e⁻ → Cr(s)
We can establish the following relations.
- The molar mass of Cr is 52.0 g/mol.
- 1 mol of Cr is deposited when 3 moles of e⁻ circulate.
- 1 mole of e⁻ has a charge of 96468 c (Faraday's constant).
- 1 A = 1 c/s
- 1 h = 3600 s
<em>How many hours will it take to plate 13.5 kg of chromium onto the cathode if the current passed through the cell is held constant at 30.0 A?</em>

Answer:
653.45
Explanation:
pi * 4 by the power of 2 * 13 ~653.45