Answer:
0.02405 g/L is the solubility of argon in water at 25 °C.
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.
To calculate the molar solubility, we use the equation given by Henry's law, which is:

where,
= Henry's constant = 
= partial pressure of carbonated drink = 0.51atm
Putting values in above equation, we get:

Molar mass of argon = 39.95 g/mol
Solubility of the argon gas :

0.02405 g/L is the solubility of argon in water at 25 °C.
Answer:
motor oil
Explanation:
According to Oxford dictionary, viscosity refers to ''a quantity expressing the magnitude of internal friction in a fluid, as measured by the force per unit area resisting uniform flow.''
The higher the molecular weight of a substance, the greater its viscosity. This is because, the long chains in the viscous substance become entangled thereby increasing the internal friction in the liquid.
Motor oil is a heavier hydrocarbon than gasoline hence it is more viscous than gasoline.
B because the climate has to be pretty balanced and if it’s too cold it won’t be habitable and if the climate is too hot it won’t be habitable aswell
They have a mass for the particles
There are no totally elastic collisions
There are intermolecular forces
Answer:
The correct answer is option C.
Explanation:

On increasing the pH of the blood the hydronium ions concentration will decrease which will result in decrease in concentration of hydronium ions at the equilibrium state of hydrogen carbonate.
Le-Chatelier's principle:
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
According to Le-Chatelier's principle , on decrease in a concentration of the product the equilibrium moves in forward correction to re-establish itself.
So, on increasing the pH, the hydronium ions concentration will decrease which results in disassociation of more hydrogen carbonate to maintain the pH of the blood.
Hence, the correct answer is option C.