Answer:
The minimum force the climber must exert is about 439N.
Explanation:
We use the relationship between friction and normal force to answer this question:

We are given the static coefficients of friction but need to determine the friction force. To do that we consider the totality of forces acting on this hapless gentleman stuck in a chimney. There is the gravity acting downward (+), then there are two friction forces acting upward (-), namely through his shoes and his back. The horizontal force exerted by the climber on both walls of the chimney is the same and is met with equally opposing normal force. Since the climber is not falling the net force in the vertical direction is zero:

The normal force in this equilibrium is about 439N and because we are told that the static friction forces are both at their maximum, this value is at the same time the <em>minimum</em> force needed for the climber to avoid starting slipping down the chimney.
The tension in the string and the acceleration must be equal for both masses. (See the free body diagrams)
Answer:
A battery produces _DC_ current, which is current that flows in only one direction.
The internal energy of the gas is 49,200 J
Explanation:
The internal energy of a diatomic gas, such as
, is given by

where
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
For the gas in this problem, we have:
n = 4.50 (number of moles)
R = 8.31 J/(mol·K) (gas constant)
(absolute temperature)
Substituting, we find:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly