1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aivan3 [116]
3 years ago
13

Three liquids that do not mix are poured into a cylindrical container with a diameter of 10.0 cm. The densities and volumes of t

he liquids are as follows.
Liquid 1: ????1 = 2.80 ✕ 103 kg/m3 and V1 = 2.00 ✕ 10−3 m3
Liquid 2: ????2 = 1.00 ✕ 103 kg/m3 and V2 = 1.50 ✕ 10−3 m3
Liquid 3: ????3 = 0.600 ✕ 103 kg/m3 and V3 = 1.00 ✕ 10−3 m3
Determine the pressure on the bottom of the container.
Physics
1 answer:
kipiarov [429]3 years ago
5 0

Answer:

P = 9622.9 Pa = 9.62 KPa

Explanation:

First, we will calculate the mass of all three liquids:

m = ρV

where,

m = mass of liquid

ρ = density of liquid

V = Volume of liquid

FOR LIQUID 1:

m₁ = (2.8 x 10³ kg/m³)(2 x 10⁻³ m³) = 5.6 kg

m₂ = (1 x 10³ kg/m³)(1.5 x 10⁻³ m³) = 1.5 kg

m₃ = (0.6 x 10³ kg/m³)(1 x 10⁻³ m³) = 0.6 kg

The total mass will be:

m = m₁ + m₂+ m₃ = 5.6 kg + 1.5 kg + 0.6 kg

m = 7.7 kg

Hence, the weight of the liquids will be:

W = mg = (7.7 kg)(9.81 m/s²) = 75.54 N

Now, we calculate the base area:

A = πr² = π(0.05 m)²

A = 7.85 x 10⁻³ m²

Now the pressure will be given as:

P = \frac{F}{A}\\\\P = \frac{75.54\ N}{7.85\ x\ 10^{-3}\ m^2}

<u>P = 9622.9 Pa = 9.62 KPa</u>

You might be interested in
A mineral's chemical composition and crystal structure help determine it's ___________.
AnnyKZ [126]

Hiya!

The answer to your question is B.

Physical Properties.

~Hope this helps~

4 0
4 years ago
As viewed from above in this picture, what direction will the current be in the coil of wire that will cause the loop to rotate
Gala2k [10]

Answer:

When viewed from above, the current in the coil should point towards the top-right corner of the picture.

Explanation:

The current in this coil have only two possible directions: clockwise or counter-clockwise. However, since the diagram shows the coil from above, not from a cross-section, just saying clockwise or counter-clockwise might be ambiguous. The statement that the current is directed towards the top-right corner of the picture is equivalent to saying that when viewed from the lower-right corner of this diagram, the current in the coil is moving clockwise.

Note that at the center of this picture, the current is parallel to the magnetic field- there will be no force on the coil at that position. On the other hand, (also when viewed from above,) at the top-right corner and the lower-left corner of the coil, the current in the coil will be perpendicular to the magnetic field. That's where the force on the coil will be the strongest.

With that in mind, apply the right-hand rule to find the direction of the force on the coil in each of the two possibilities.

Assume that when viewed from above, the current is flowing towards the top-right corner of the picture. Consider the wire near the top-right corner of this coil (as viewed above on this picture.) The current will be going into the picture into the magnetic field. By the right-hand rule, the current on the wire near that point should be pointing towards the bottom of this picture. (Point fingers on the right hand in the direction of the current I. Rotate the right hand such that when curling the fingers, they point in the direction of the magnetic field B. The direction of the right thumb should now point in the direction of the force on the wire F.)

Based on the same assumption, the current in the wires near the bottom left corner of this coil will be pointing out of the picture. By the right hand rule, the magnetic force on the coil in that region should be pointing towards the top of this picture. Combing these two forces, the coil would indeed be rotating around the center of this picture in the direction shown in the diagram.

It can also be shown that if the current points towards the bottom left corner of the picture when viewed from above, the coil will be rotating about the center of this picture in the opposite direction.

7 0
3 years ago
A wave is produced in a rope. The wave has a speed of 33 m/s and a frequency of 22 Hz. What wavelength is produced? 0. 67 m 0. 7
vekshin1

Answer:

Wavelength = <u>1.5 m</u>

Explanation:

The formula for waves in terms of wavelength, speed and frequency is:

Speed (v) = Frequency (f) × Wavelength (λ)

33 = 22 × λ

33 = 22λ

λ = \frac{33}{22}

So, λ = 1.5 m

4 0
2 years ago
The interior space of large box is kept at 30 C. The walls of the box are 3 m high and have a ‘sandwich’ construction consisting
White raven [17]

Answer:

\frac{\dot Q}{A} =20.129\ W.m^{-2}

T_1=27.58\ ^{\circ}C & T_2=2.41875\ ^{\circ}C

Explanation:

Given:

  • interior temperature of box, T_i=30^{\circ}C
  • height of the walls of box, h=3\ m
  • thickness of each layer of bi-layered plywood, x_p=1.25\ cm=0.0125\ m
  • thermal conductivity of plywood, k_p=0.104\ W.m^{-1}.K^{-1}
  • thickness of sandwiched Styrofoam, x_s=5\ cm=0.05\ m
  • thermal conductivity of Styrofoam, k_s=0.04\ W.m^{-1}.K^{-1}
  • exterior temperature, T_o=0^{\circ}C

<u>From the Fourier's law of conduction:</u>

\dot Q=\frac{dT}{(\frac{x}{kA}) }

\dot Q=\frac{dT}{R_{th} } ....................................(1)

<u>Now calculating the equivalent thermal resistance for conductivity using electrical analogy:</u>

R_{th}=R_p+R_s+R_p

R_{th}=\frac{x_p}{k_p.A}+\frac{x_s}{k_s.A}+\frac{x_p}{k_p.A}

R_{th}=\frac{1}{A} (\frac{x_p}{k_p}+\frac{x_s}{k_s}+\frac{x_p}{k_p})

R_{th}=\frac{1}{A} (\frac{0.0125}{0.104}+\frac{0.05}{0.04}+\frac{0.0125}{0.104})

R_{th}=\frac{1.4904}{A} .....................(2)

Putting the value from (2) into (1):

\dot Q=\frac{30-0}{\frac{1.4904}{A} }

\dot Q=\frac{30\ A}{1.4904}

\frac{\dot Q}{A} =20.129\ W.m^{-2} is the heat per unit area of the wall.

The heat flux remains constant because the area is constant.

<u>For plywood-Styrofoam interface from inside:</u>

\frac{\dot Q}{A} =k_p.\frac{T_i-T_1}{x_p}

20.129=0.104\times \frac{30-T_1}{0.0125}

T_1=27.58\ ^{\circ}C

&<u>For Styrofoam-plywood interface from inside:</u>

\frac{\dot Q}{A} =k_s.\frac{T_1-T_2}{x_s}

20.129=0.04\times \frac{27.58-T_2}{0.05}

T_2=2.41875\ ^{\circ}C

4 0
3 years ago
b) When the ball is near its maximum height it experiences a brief gust of wind that reduces its horizontal velocity by 2.50 m/s
fomenos

Answer:

The horizontal distance is 0.64 m.

Explanation:

Initial velocity, u =2.5m/s

The maximum horizontal distance is

R = \frac{u^2}{2g}\\\\R = \frac{2.5\times 2.5}{9.8}\\\\R = 0.64 m

3 0
3 years ago
Other questions:
  • How many miles is the moon from the earth
    11·1 answer
  • 1. What is the relationship between the current through each resistor and the current through the battery?
    7·1 answer
  • What is the part of the steam engine that does the work? A. The flywheel B. The cylinder C. The piston D. The turbine
    8·2 answers
  • The moon revolves around earth at a fairly constant speed.Is the moon accelerating
    8·1 answer
  • ___ is produced when grains of quartz in sandstone are welded together when the rock is subjected to high temperatures.
    7·1 answer
  • Due to human demand because of its importance to life, the Earth's most precious resource is 
    5·2 answers
  • A parcel of mass 10 kg rests on a lorry.When the lorry accelerates at 1.5 m/s^2,the parcel is just about to slide backwards. Wha
    13·1 answer
  • Which of the following chemical equations is unbalanced?
    14·1 answer
  • While a roofer is working on a roof that slants at 36.0 ° above the horizontal, he accidentally nudges his 86 0 N toolbox, caus
    6·1 answer
  • Which of the following is part of the cycle of violence? (Select all that apply)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!