Answer:
Solution A has a pH of 6 and solution B has a pH of 8. Which of the following is true regarding the concentration of hydrogen ions in each solution? A) A has 100 times greater H+ concentration than B. B) B has 100 times greater H+ concentration than A. C) A has 7/9 of the H+ concentration of B. D) A has 9/7 of the H+ concentration of B. E) none of these
Explanation:
Hey im super sorry if i get this wrong :)
Answer:197.504 N
Explanation:
Given
Two Charges with magnitude Q experience a force of 12.344 N
at distance r
and we know Electrostatic force is given



Now the magnitude of charge is 2Q and is at a distance of 

F'=16F
F'=197.504 N
Answer:0.6kw
Explanation:
Power=force×velocity
Power=20×30=600w
In kw it's going to be 600/1000=0.6kw
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '. D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .--
They don't change by the same factor, because 1/g is inside the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.