1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
attashe74 [19]
3 years ago
11

A 10.0 N package of whole wheat flour is suddenly placed on the pan of a scale such as you find in grocery stores. The pan is su

pported from below by a vertical spring of force constant 395 N/m. If the pan has negligible weight, find the maximum distance the spring will be compressed if no energy is dissipated by friction.
Physics
1 answer:
inna [77]3 years ago
7 0

Answer:

0.025 m

Explanation:

From the question,

Applying Hook's law

F = ke................... Equation 1

Where F = Force, k = spring constant of the scale, e = maximum distance at which the spring will compress.

make e the subject of the equation

e = F/k....................... Equation 2

Given: F = 10 N, e = 395 N/m

Substitute these values into equation 2

e = 10/395

e = 0.025 m

You might be interested in
It was a children versus grown-ups competition at school. One event required the adult to throw a basketball as far as he could.
aleksklad [387]
Based on Newton's Law, the event is not fair because:

<span>No, because a basketball is bigger than a baseball, and objects that are bigger accelerate slower.


I hope my answer has come to your help. God bless and have a nice day ahead!</span>

4 0
3 years ago
Read 2 more answers
What happens when a light ray is parallel to the principal axis ?
Phantasy [73]

Answer:

Any incident ray traveling parallel to the principal axis of a converging lens will refract through the lens and travel through the focal point on the opposite side of the lens. ... These rays of light will refract when they enter the lens and refract when they leave the lens.

Hope this helps...

7 0
3 years ago
A 6.0-kilogram block, sliding to the east across a horizontal, frictionless surface with a momentum of 30.0 kilogram · meters pe
Lina20 [59]

The final speed of the block after the collision with the obstacle is \boxed{3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}}.

Further Explanation:

Given:

The mass of the block is 6.0\,{\text{kg}}.

The initial momentum of the block is 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/ {\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}.

The impulse imparted by the obstacle is 10\,{\text{N}} \cdot {\text{s}}.

Concept:

The block is sliding towards east and the impulse imparted by the obstacle is towards the obstacle is towards west on the block. It means that the impulse exerted by the obstacle will reduce the momentum of the block.

According to the impulse momentum theorem, the rate of change of momentum of the body is equal to the impulse imparted to the body.

The expression for the impulse momentum theorem is.

{p_f} - p{ & _i} = I               …… (1)                                    

Substitute 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} for {p_i} and - 10\,{\text{N}} \cdot {\text{s}} for I  in equation (1).

 \begin{aligned}{p_f} &= - 10\,{\text{N}} \cdot {\text{s}} + 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}} \\&= 20\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\\end{aligned}

The final momentum of the block can be expressed as:

{p_f} = m{v_f}                   …… (2)                                  

Substitute 20\text{kg}\;\text{m/s} for {p_f} and 6.0\,{\text{kg}} for m in equation (2).

 \begin{aligned}20 &= 6 \times {v_f} \\ {v_f}&= \frac{{20}}{6}\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\&= 3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} \\ \end{aligned}

Thus, the final speed of the block after the collision with the obstacle is \boxed{3.33\;\text{m/s}}.

Learn More:

  1. Choose the 200 kg refrigerator. Set the applied force to 400 n (to the right) brainly.com/question/4033012
  2. With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward brainly.com/question/9719731
  3. Which of the following is an example of a nonpoint source of freshwater pollution brainly.com/question/1482712

Answer Details:

Grade: High School

Chapter: Impulse-momentum theorem

Subject: Physics

Keywords:  Impulse, imparted, obstacle, speed, momentum, the obstacle, impulse-momentum theorem, frictionless surface, speed of block after collision.

5 0
3 years ago
Read 2 more answers
Suppose that you have been chosen for a space mission to a distant planet. Due to the length of time you'll be away from Earth y
Contact [7]

Answer:

I should be active for 15 hours to meet the physical activity requirement.

Explanation:

Since time dilates in moving objects, we use the formula t = t₀/√(1 - β²) where t = time in space vehicle, t₀ = time on earth = 9 hours and β = v/c where v = speed of space vehicle = 0.8c.

So, t = t₀/√(1 - β²)

t = 9/√(1 - (v/c)²)

= 9/√(1 - (0.8c/c)²)

= 9/√(1 - (0.8)²)

= 9/√(1 - (0.64)

= 9/√0.36

= 9/0.6

= 15 hr

So, according to a timer on the space vehicle, I should be active for 15 hours to meet the physical activity requirement.

8 0
3 years ago
Luigi twirls a round piece of pizza dough overhead with a frequency of
viva [34]

The linear speed of the pepperoni is 0.628 m/s. Its direction is tangential to the circle.

We know that;

v = rω

r = radius of the piece = 10 cm or 0.1 m

ω = angular velocity

We have to convert 60 revolutions per minute to radians per second

1 rev/min = 0.10472 rad/s

60 revolutions per minute = 60 rev/min × 0.10472 rad/s/1 rev/min

= 6.28 rad/s

v =  0.1 m ×  6.28 rad/s

v = 0.628 m/s

The direction of this velocity is tangential to the circle.

Learn more: brainly.com/question/4612545

5 0
2 years ago
Other questions:
  • Electrons are (2 points)
    9·2 answers
  • Mary and her younger brother Alex decide to ride the carousel at the State Fair. Mary sits on one of the horses in the outer sec
    13·1 answer
  • ASAP Is a phone sliding down a binder potential and kinetic energy.
    14·2 answers
  • Determine the index of refraction of glass that is struck by unpolarized light at 53.8 degrees and resulting in a fully polarize
    13·1 answer
  • How many times should the power develop by the engine of a ship increases to double is velocity i the resistance of the water to
    7·1 answer
  • Why might the amount of current and voltage in a circuit need to be juggled
    13·1 answer
  • Suppose, the same angular momentum is transferred to two rotating bodies of different moment of inertia , how will you compare t
    14·1 answer
  • An ultrasound machine is being used to try to identify potential kidney stones. The machine is working properly and no kidney st
    11·2 answers
  • Please help me pwease
    11·1 answer
  • 7. A 2.0 kg block, starting from rest, is pushed by a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!