Answer:
![v=1667.9km/h](https://tex.z-dn.net/?f=v%3D1667.9km%2Fh)
![a_{cp}=436.6km/h^2](https://tex.z-dn.net/?f=a_%7Bcp%7D%3D436.6km%2Fh%5E2)
Explanation:
The speed is the distance traveled divided by the time taken. The distance traveled in 24hs while standing on the equator is the circumference of the Earth
, where
is the radius of the Earth.
We have then:
![v=\frac{C}{t}=\frac{2\pi R}{t}=\frac{2\pi (6371km)}{(24h)}=1667.9km/h](https://tex.z-dn.net/?f=v%3D%5Cfrac%7BC%7D%7Bt%7D%3D%5Cfrac%7B2%5Cpi%20R%7D%7Bt%7D%3D%5Cfrac%7B2%5Cpi%20%286371km%29%7D%7B%2824h%29%7D%3D1667.9km%2Fh)
And then we use the centripetal acceleration formula:
![a_{cp}=\frac{v^2}{R}=\frac{(1667.9km/h)^2}{(6371km)}=436.6km/h^2](https://tex.z-dn.net/?f=a_%7Bcp%7D%3D%5Cfrac%7Bv%5E2%7D%7BR%7D%3D%5Cfrac%7B%281667.9km%2Fh%29%5E2%7D%7B%286371km%29%7D%3D436.6km%2Fh%5E2)
The answer isn't here. All sites say the answer is Only animals are composed of cells. More than one site says this.
Holes I helped
A. Solid turns into a gas
We make a graphic of this problem to define the angle.
The angle we can calculate through triangle relation, that is,
![sin\theta = \frac{c}{QP}\\sin\theta = \frac{c}{R}\\\theta=sin^{-1}\frac{c}{R}](https://tex.z-dn.net/?f=sin%5Ctheta%20%3D%20%5Cfrac%7Bc%7D%7BQP%7D%5C%5Csin%5Ctheta%20%3D%20%5Cfrac%7Bc%7D%7BR%7D%5C%5C%5Ctheta%3Dsin%5E%7B-1%7D%5Cfrac%7Bc%7D%7BR%7D)
With this function we should only calculate the derivate in function of c
![\frac{d\theta}{dc} = \frac{1}{\sqrt{1-\frac{c^2}{R^2}}}(\frac{c}{R})'\\\frac{d\theta}{dc} = \frac{1}{\sqrt{R^2-c^2}}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%7D%7Bdc%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%5Cfrac%7Bc%5E2%7D%7BR%5E2%7D%7D%7D%28%5Cfrac%7Bc%7D%7BR%7D%29%27%5C%5C%5Cfrac%7Bd%5Ctheta%7D%7Bdc%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7BR%5E2-c%5E2%7D%7D)
That is the rate of change of
.
b) At this point we need only make a substitution of 0 for c in the equation previously found.
![\frac{d\theta}{dc}\big|_{c=0} = \frac{1}{\sqrt{R^2-0}}\\\frac{d\theta}{dc}\big|_{c=0} = \frac{1}{R}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%7D%7Bdc%7D%5Cbig%7C_%7Bc%3D0%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7BR%5E2-0%7D%7D%5C%5C%5Cfrac%7Bd%5Ctheta%7D%7Bdc%7D%5Cbig%7C_%7Bc%3D0%7D%20%3D%20%5Cfrac%7B1%7D%7BR%7D)
Hence we have finally the rate of change when c=0.