Answer:
According,to the law of conservation of energy,the amount of energy in a closed system always stay constant. ... So,the amount of work output and other transformed energy is equal to the amount of energy inputs. • In this way,the conservation of energy is fulfilled by the machines.
The temperature at which the sample of liquid turns to gas at 135 °C is termed as boiling point.
Answer: Option A
<u>Explanation:
</u>
The observation of conversion of liquid to gas indicates that there is occurrence of change in the state of matter. The inter-conversion from one state to another can be done by either varying the temperature or by varying the pressure.
In this case, the liquid on heating gets converted to gaseous state after attaining a particular temperature say 135 °C. So, this process of conversion from liquid to gaseous state on heating is termed as boiling.
The temperature at which a liquid converts to gas is termed as the boiling point of that liquid.
The quantity of matter in a body regardless of its volume or of any forces acting on it.
Answer:
A boxed 14.0 kg computer monitor is dragged by friction 5.50 m up along the moving surface of a conveyor belt inclined at an angle of 36.9 ∘ above the horizontal. The monitor's speed is a constant 2.30 cm/s.
how much work is done on the monitor by (a) friction, (b) gravity
work(friction) = 453.5J
work(gravity) = -453.5J
Explanation:
Given that,
mass = 14kg
displacement length = 5.50m
displacement angle = 36.9°
velocity = 2.30cm/s
F = ma
work(friction) = mgsinθ .displacement
= (14) (9.81) (5.5sin36.9°)
= 453.5J
work(gravity)
= the influence of gravity oppose the motion of the box and can be pushing down, on the box from and angle of (36.9° + 90°)
= 126.9°
work(gravity) = (14) (9.81) (5.5cos126.9°)
= -453.5J
Answer:
Explanation:
a ) Thermal efficiency = work output / heat input
= .38 MW / 1 MW = .38
OR 38%
Heat rejected at cold reservoir = heat input - work output
1 MW - .38 MW
= 0.62 MW.
b ) For reversible power output
efficiency = T₂ - T₁ / T₂ ; T₂ is temperature of hot reservoir and T₁ is temperature of cold reservoir.
= 1200 - 300 / 1200 = 900 / 1200
= .75
or 75%
rate at which heat is rejected
= 1 - .75 x 1
= .25 MW .