To solve this problem we will apply the concepts related to energy conservation. Here we will use the conservation between the potential gravitational energy and the kinetic energy to determine the velocity of this escape. The gravitational potential energy can be expressed as,

The kinetic energy can be written as,

Where,
Gravitational Universal Constant
Mass of Earth
Height
Radius of Earth
From the conservation of energy:

Rearranging to find the velocity,
Escape velocity at a certain height from the earth
If the height of the satellite from the earth is h, then the total distance would be the radius of the earth and the eight,


Replacing the values we have that


Therefore the escape velocity is 3.6km/s
B
Opposites attract
Like poles repel
The velocity of the cat is 14.7 m/s. Or the cat is moving with the speed of 14.7 m/s after jumping from the balcony.
Answer:
Explanation:
a) series resistors carry the same current
A = V/Re = 6/(16 + 6) = 0.2727272... ≈ 27 mA
b) V = V₀(R/Re) = 6(16/(16 + 6)) = 4.363636 ≈ 4.4 V
c) V = V₀(R/Re) = 6(6/(16 + 6)) = 1.636363 ≈ 1.6 V
or V = 6 - 4.4 = 1.6 V
Answer:
10.347 minutes.
Explanation:
According to F = ma, she exerts force on camera of the magnitude
F = 0.67Kg*12m/
= 8.04N, assuming it took her one second to accelerate camera to 12m/s, then by newtons third law, which says every action has equal and opposite reaction , the camera exerts the same amount of force on the astronaut which gives her acceleration of a =
.
and velocity of V = 0.1130801680m/s.
at this velocity , the astronaut has to cover the distance of 70.2 meters, it will take her 620.7985075s = 10.347 min to get to the shuttle (using S = vt).