Answer:d
Explanation:
because the brighter the stars look the bigger they look
<span>Mass represents the density of an object multiplied with the volume it occupies. As a result, an object's density is found by dividing its mass by its volume. So the answer is a.</span>
Answer:
Object should be placed at a distance, u = 7.8 cm
Given:
focal length of convex lens, F = 16.5 cm
magnification, m = 1.90
Solution:
Magnification of lens, m = -
where
u = object distance
v = image distance
Now,
1.90 = 
v = - 1.90u
To calculate the object distance, u by lens maker formula given by:
u = 7.8 cm
Object should be placed at a distance of 7.8 cm on the axis of the lens to get virtual and enlarged image.
Answer: KE = 62.5J
Explanation:
Given that
Mass of object = 5kg
kinetic energy KE = ?
velocity of object = 5m/s
Since kinetic energy is the energy possessed by a moving object, and it depends on the mass (m) of the object and the velocity (v) by which it moves. Therefore, the object has kinetic energy.
i.e K.E = 1/2mv^2
KE = 1/2 x 5kg x (5m/s)^2
KE = 0.5 x 5 x 25
KE = 62.5J
Thus, the object has 62.5 joules of kinetic energy.