Answer:
a) the elastic force of the pole directed upwards and the force of gravity with dissects downwards
Explanation:
The forces on the athlete are
a) at this moment the athlete presses the garrolla against the floor, therefore it acquires a lot of elastic energy, which is absorbed by the athlete to rise and gain potential energy,
therefore the forces are the elastic force of the pole directed upwards and the force of gravity with dissects downwards
b) when it falls, in this case the only force to act is batrachium by the planet, this is a projectile movement for very high angles
c) When it reaches the floor, it receives an impulse that opposes the movement created by the mat. The attractive force is the attraction of gravity.
The process by which the heat energy is transmitted between the atoms or molecules is known as conduction.
Explanation:
Conduction is the transfer of heat through the material that are caused by temperature gradient with the material ends in heat flux. The heat transfer done by movement and mixing of a fluid is known as convection.
If a fluid is taken and it is kept as stationary. If there is a temperature gradient across that fluid, there would be transfer of heat that occurs in the fluid. It is negligible when compared to convective heat transfer.
Because of the heat transfer from solid to solid, density of liquid changes and start to move in upward direction due to low density. This type of motion is known as convection currents.
They share covalent bonds
Density = (mass) / (volume), no matter how large or small the sample is.
We can't calculate the density, because you left out the number for the volume.
Also, you didn't tell us the unit for the mass of 180.
a). If the mass is 180 grams, then the density is
(180 gm) / (volume) .
b). No matter how many pieces you crush it into, and
no matter how large or small a piece is, its density is
the same. (I just wish we knew what the density really is.)
c). A piece may have 80 grams of mass. It doesn't "weigh" 80 grams.
Since the density of the whole rock is (180 gm) / (volume),
the density of any piece of it is (180 gm) / (volume).
Multiply each side by (volume): (Density) x (volume) = 180 gm
Divide each side by (density): Volume = (180 gm) / (density)
We can't calculate the volume of an 80-gm piece, because
we don't know the density. (That's because you left the volume
out of the question.)