Your answer is C) <span> the potential energy of an object is always greater than its kinetic energy </span>
Answer:
Av = 25 [m/s]
Explanation:
To solve this problem we must use the definition of speed, which is defined as the relationship between distance over time. for this case we have.

where:
Av = speed [km/h] or [m/s]
distance = 180 [km]
time = 2 [hr]
Therefore the speed is equal to:
![Av = \frac{180}{2} \\Av = 90 [km/h]](https://tex.z-dn.net/?f=Av%20%3D%20%5Cfrac%7B180%7D%7B2%7D%20%5C%5CAv%20%3D%2090%20%5Bkm%2Fh%5D)
Now we must convert from kilometers per hour to meters per second
![90[\frac{km}{h}]*1000[\frac{m}{1km}]*1[\frac{h}{3600s} ]= 25 [m/s]](https://tex.z-dn.net/?f=90%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A1000%5B%5Cfrac%7Bm%7D%7B1km%7D%5D%2A1%5B%5Cfrac%7Bh%7D%7B3600s%7D%20%5D%3D%2025%20%5Bm%2Fs%5D)
Answer:
m = 0.51[kg]
Explanation:
Potential energy is defined as the product of mass by gravity by height.

where:
Epot = potential energy = 15 [J]
m = mass [kg]
g = gravity acceleration = 9.8 [m/s²]
h = elevation = 3 [m]
Now replacing:
![E_{pot}=m*g*h\\15=m*9.8*3\\m = 0.51[kg]](https://tex.z-dn.net/?f=E_%7Bpot%7D%3Dm%2Ag%2Ah%5C%5C15%3Dm%2A9.8%2A3%5C%5Cm%20%3D%200.51%5Bkg%5D)