Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance
defined by the formula:

Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:

and when this is combined with the third resistor in series, the equivalent resistance (
) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

The problem states that the difference between the equivalent resistances in both circuits is given by:

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:

Answer:

Explanation:
Given
-- initial velocity
--- height
Required
Determine the time to hit the ground
This will be solved using the following motion equation.

Where

So, we have:


Subtract 30.2 from both sides





Solve using quadratic formula:

Where




Split the expression
or 
or 
Time can't be negative; So, we have:


Hence, the time to hit the ground is 1.82 seconds
now you justhave to solve the last numbers because...Iam sooo Lazy right now
A
More concentrated means more collisions per unit volume, and as the volume stays the same and only concentration changes, the there are more collisions