The amount in grams of Al₂O₃ produced is approximately 6.80 g.
Aluminium reacts completely with oxygen(air) to produce Al₂O₃. The reaction can be represented with a chemical equation as follows:
AL + O₂ → Al₂O₃
Let's balance it
4AL + 3O₂ → 2Al₂O₃
4 moles of Aluminium reacts with 3 moles of Oxygen molecules to produce 2 moles of Aluminium oxide. Therefore,
Since, aluminium reacts completely, it is the limiting reagent in the reaction. Therefore,
Atomic mass of AL = 27 g
Molar mass of Al₂O₃ = 101.96 g/mol
4(27 g) of AL gives 2(101.96 g) of Al₂O₃
3.6 g of AL will give ?
cross multiply
mass of Al₂O₃ produced = 3.6 × 203.92 / 108 = 734.112 / 108 = 6.797
mass of Al₂O₃ produced = 6.80 g.
read more: brainly.com/question/23982245?referrer=searchResults
The balanced equation for the acid base reaction is as follows
NaOH + HCl ---> NaCl + H₂O
stoichiometry of NaOH to HCl is 1:1
the number of NaOH moles reacted - 0.200 mol/L x 0.0250 L = 0.005 mol
according to molar ratio
number of NaOH moles reacted = number of HCl moles reacted
therefore number of HCl moles - 0.005 mol
volume of 30.0 mL contains 0.005 mol
therefore 1000 mL contains - 0.005 mol / 0.030 L = 0.167 M
concentration of HCl is 0.167 M
Answer:
Exothermic reactions feel hot
Endothermic reactions feel cool
Explanation:
In an exothermic reaction, heat is given out by the system. The energy of the reactants is greater than that of the products hence the excess energy is given off as heat. The reaction vessel feels hot.
In an endothermic reaction, the energy of products is greater than that of the reactants hence energy is taken into the system and the reaction vessel feels cool.
There are 22 bonding parts
1 mol = 6.023x10^23 number of molecules (Avogadro's number)
1 : 6.023x10^23
X : 4.91x10^22
(6.023x10^23)X = 4.91x10^22
X = 4.91x10^22/6.023x10^23
X = 0.082 Moles