Answer:
Density = 8.92 g/cm³
Explanation:
Density shows the relation of the mass and volume of a determined object. We have this deffinition:
Density = mass / volume
First of all, we calcualte the volume of the block of copper metal, with the data given:
8.4 cm . 5.5 cm . 4.6 cm = 212.52 cm³
Now we replace at the density formula:
Density = 1896 g /212.52 cm³ = 8.92 g/cm³
Super giants have the greatest luminosity!
To get the molarity you need to follow this equation
moles of solute
Molarity (M = -----------------------
Liters of solution
But before you apply that equation you need to find the moles of solute and the liters of solution. Follow this equation
Na2SO4 + BaCl2 = BaSO4 + 2 NaCl
Solution
Moles of BaSO4 = 5.28 g
---------------
233.43 g / mol
= 0.0226 moles
Moles of NaSO4 = 0.0226
0.0226 mole
Molarity = -----------------
0.250 L
= 0.0905 mol / L
So the answer is 0.0905 mol / L
Here's the equation:
<span>Fe2 O3 + 2Al → 2Fe + Al2 O3
</span>
Here's the question.
What mass of Al will react with 150g of Fe2 O3?
<span>In every 2 moles Al you need 1 mole Fe2O3 </span>
<span>moles = mass / molar mass </span>
<span>moles Fe2O3 = 150 g / 159.69 g/mol </span>
<span>= 0.9393 moles </span>
<span>moles Al needed = 2 x moles Fe2O3 </span>
<span>= 2 x 0.9393 mol </span>
<span>= 1.879 moles Al needed </span>
<span>mass = molar mass x moles </span>
<span>mass Al = 26.98 g/mol x 1.879 mol </span>
<span>= 50.69 g </span>
<span>= 51 g (2 sig figs)
</span>
So the <span>mass of Al that will react with 150g of Fe2 O3 is 51 grams.</span>
The most abundant carbon isotope is carbon-12.
The relative atomic mass of carbon is 12.011, which is extremely close to 12.0. This means that the masses C-13, and C-14 are practically negligible when contributing to the relative atomic mass of carbon.
the C-12 isotope makes up 98.9% of carbon atoms, C-13 makes up 1.1% of carbon atoms, and C-14 makes up just a trace of carbon atoms as they are found in nature.