<em>Iron, and to a lesser degree, steel, can only become magnetised by passing an electrical current through it (an electromagnet). So a steel ship does not become magnetised in the accepted sense during construction. </em>
<span><em>However, any large mass of iron will affect the accuracy of a magnetic compass, causing it to deviate wildly from magnetic North. This problem was encountered when iron ships were first constructed in the mid-19 Century. It was overcome by mounting the compass in a 'binnacle', a housing containing two large soft iron balls either side of the compass itself, which counteracted the effect of the hull and balanced the compass so that it read correctly</em></span>
a water turbine drops water onto a blade which gains ke at water's gpe expense
Answer
given,
v = (6 t - 3 t²) m/s
we know,


position of the particle

integrating both side

x = 3 t² - t³
Position of the particle at t= 3 s
x = 3 x 3² - 3³
x = 0 m
now, particle’s deceleration


a = 6 - 6 t
at t= 3 s
a = 6 - 6 x 3
a = -12 m/s²
distance traveled by the particle
x = 3 t² - t³
at t = 0 x = 0
t = 1 s , x = 3 (1)² - 1³ = 2 m
t = 2 s , x = 3(2)² - 2³ = 4 m
t = 3 s , x = 0 m
total distance traveled by the particle
D = distance in 0-1 s + distance in 1 -2 s + distance in 2 -3 s
D = 2 + 4 + 2 = 8 m
average speed of the particle



The question is missing, however, I guess the problem is asking for the value of the force acting between the two balls.
The Coulomb force between the two balls is:

where

is the Coulomb's constant,

is the intensity of the two charges, and

is the distance between them.
Substituting these numbers into the equation, we get

The force is repulsive, because the charges have same sign and so they repel each other.
Answer:
I would agree with your selection.
Explanation: