Answer:
t = 4.17 [s]
Explanation:
We know that work is defined as the product of force by distance.
W = F*d
where:
F = force [N] (units of Newtons)
d = distance = 6.34 x 10⁴ [mm] = 63.4 [m]
In order to find the force, we must determine the weight of the box, the weight can be determined by means of the product of mass by gravitational acceleration.
w = m*g
where:
m = mass = 1.47 x 10⁴ [g] = 14.7 [kg]
g = gravity acceleration = 9.81 [m/s²]
w = 14.7*9.81
w = 144.2 [N]
Therefore the work can be calculated.
W = w*d
W = 144.2*63.4
W = 9142.72 [J] (units of Joules)
Power is now defined in physics as the relationship of work at a given time
P = W/t
where:
P = power = 2190 [W]
t = time [s]
Now clearing t, we have.
t = W/P
t = 9142.72/2190
t = 4.17 [s]
Answer:
a) w = 25.1 rad/s, b) θ = 0.9599 rad
, c) α = 328.1 rad/s² d) t= 0.0765 s
Explanation: Let's work on this exercise with the equations of angular kinematics
a) The angular velocity is
w = 4.00 rev / s (2π rad / 1 rev)
w = 25.1 rad/s
b) let's reduce the angle of degrees to radians
θ = 55 ° (π rad / 180 °)
θ = 0.9599 rad
c) Let's use the initial angular velocity as the system part of the rest is zero
w² = w₀² + 2 α θ
α = w² / 2 θ
α = 25.1²/2 0.9599
α = 328.1 rad / s²
d)
w = w₀ + α t
t = w / α
t = 25.1 / 328.1
t= 0.0765 s