Answer:
hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello hello
Answer: 14. 49 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
Where:
is the horizontal distance between the cannon and the ball
is the cannonball initial velocity
since the cannonball was shoot horizontally
is the time
is the final height of the cannonball
is the initial height of the cannonball
is the acceleration due gravity
Isolating
from (2):
(3)
(4)
(5)
Substituting (5) in (1):
(6)
Finally:
Answer:
I believe it is B, not 100% sure though
Explanation:
Answer:
λ = 102.78 nm
This radiation is in the UV range,
Explanation:
Bohr's atomic model for the hydrogen atom states that the energy is
E = - 13.606 / n²
where 13.606 eV is the ground state energy and n is an integer
an atom transition is the jump of an electron from an initial state to a final state of lesser emergy
ΔE = 13.606 (1 /
- 1 / n_{i}^{2})
the so-called Lyman series occurs when the final state nf = 1, so the second line occurs when ni = 3, let's calculate the energy of the emitted photon
DE = 13.606 (1/1 - 1/3²)
DE = 12.094 eV
let's reduce the energy to the SI system
DE = 12.094 eV (1.6 10⁻¹⁹ J / 1 ev) = 10.35 10⁻¹⁹ J
let's find the wavelength is this energy, let's use Planck's equation to find the frequency
E = h f
f = E / h
f = 19.35 10⁻¹⁹ / 6.63 10⁻³⁴
f = 2.9186 10¹⁵ Hz
now we can look up the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 2.9186 10¹⁵
λ = 1.0278 10⁻⁷ m
let's reduce to nm
λ = 102.78 nm
This radiation is in the UV range, which occurs for wavelengths less than 400 nm.