Answer:
199.0521 Will be the answer
Answer:
adapted from NOVA, a team of historians, engineers, and trade experts recreate a medieval throwing machine called a trebuchet. To launch a projectile, a trebuchet utilizes the transfer of gravitational potential energy into kinetic energy. A massive counterweight at one end of a lever falls because of gravity, causing the other end of the lever to rise and release a projectile from a sling. As part of their design process, the engineers use models to help evaluate how well their designs will work.
Explanation:
Answer:
gexp = 3.65 m/s²
Explanation:
The value of acceleration due to gravity changes with the altitude. The following formula gives the value of acceleration due to gravity at some altitude from the sea level:
gexp = g(1 - 2h/Re)
where,
gexp = expected value of g at altitude = ?
g = acceleration due to gravity at sea level = 9.8 m/s²
h = altitude = 2000 km = 2 x 10⁶ m
Re = Radius of Earth = 6.37 x 10⁶ m
Therefore,
gexp = (9.8 m/s²)(1 - 2*2 x 10⁶ m/6.37 x 10⁶ m)
<u>gexp = 3.65 m/s²</u>
Answer:
r = 3519.55 m
Explanation:
We know that the acceleration of a particle in a circular motion is directed towards the center of the circumference and has magnitude:
F = rω^2
Where r is the radius of the circumference and ω is the angular velocity.
From the two acceleration vectors we find that their magnitude is
√(7^2+6^2) = √85
Therefore:
√85 m/s^2= rω^2
Now we need to calculate the angular velocity to obtain the radius. Since t2-t1 = 3s is less than one period we can be sure that the angular velocity is equals to the angle traveled between this time divided by 3 s.
The angle with respect to the x-axis for the particle at t1 and t2 is:

Therefore, the angular velocity ω is (in radians per second):

Therefore:
r = √85 / (0.0511813)^2 = 3519.55 m
Since the acceleration is uniform, we can calculate it from the data we are given:
a = (vf - vi)/2
where vf=33 m/s and vi=11 m/s
Then use Suvat's equation:
x(t) = vi*t + 0.5 * a * t
where t=20s