Aerobie. Frisbee. Discus. Javelin. I suppose an American football to some extent.
<span>Pull! Clay pigeons. Arrows. Wingsuit. Kites. Hang gliders. Sails. sailboat keels/dagger boards. Water skis. Ski jumping skis. Boomerang. </span>
<span>I'm excluding spheres and parachutes as bluff bodies even though aerodynamics often plays a big part in their motion.</span>
Answer:
S = 11.025 m
Explanation:
Given,
The time taken by the pebble to hit the water surface is, t = 1.5 s
Acceleration due to gravity, g = 9.8 m/s²
Using the II equations of motion
S = ut + 1/2 gt²
Here u is the initial velocity of the pebble. Since it is free-fall, the initial velocity
u = 0
Therefore, the equation becomes
S = 1/2 gt²
Substituting the given values in the above equation
S = 0.5 x 9.8 x 1.5²
= 11.025 m
Hence, the distance from the edge of the well to the water's surface is, S = 11.025 m
Answer:
E.two angles are vertical angles if, and only if they are not adjacent angles
<h2>
Answer:</h2><h2>
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
</h2>
Explanation:
A meteoroid is in a circular orbit 600 km above the surface of a distant planet.
Mass of the planet = mass of earth = 5.972 x
Kg
Radius of the earth = 90% of earth radius = 90% 6370 = 5733 km
The acceleration of the meteoroid due to the gravitational force exerted by the planet = ?
By formula, g = 
where g is the acceleration due to the gravity
G is the universal gravitational constant = 6.67 x

M is the mass of the planet
r is the radius of the planet
Substituting the values, we get
g = 
g = 12.12 m/
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
Answer:
Explanation:
We know that the volume V for a sphere of radius r is

If we got an uncertainty
the formula for the uncertainty of V is:

We can calculate this uncertainty, first we obtain the derivative:


And using it in the formula:



The relative uncertainty is:



Using the values for the problem:

This is, a percent uncertainty of 4.77 %