Answer:
a) α = 0.338 rad / s² b) θ = 21.9 rev
Explanation:
a) To solve this exercise we will use Newton's second law for rotational movement, that is, torque
τ = I α
fr r = I α
Now we write the translational Newton equation in the radial direction
N- F = 0
N = F
The friction force equation is
fr = μ N
fr = μ F
The moment of inertia of a saying is
I = ½ m r²
Let's replace in the torque equation
(μ F) r = (½ m r²) α
α = 2 μ F / (m r)
α = 2 0.2 24 / (86 0.33)
α = 0.338 rad / s²
b) let's use the relationship of rotational kinematics
w² = w₀² - 2 α θ
0 = w₀² - 2 α θ
θ = w₀² / 2 α
Let's reduce the angular velocity
w₀ = 92 rpm (2π rad / 1 rev) (1 min / 60s) = 9.634 rad / s
θ = 9.634 2 / (2 0.338)
θ = 137.3 rad
Let's reduce radians to revolutions
θ = 137.3 rad (1 rev / 2π rad)
θ = 21.9 rev
Answer:
Sun
Explanation:
Sun Can Give Us Light Energy And It convert Into Heat Energy
Answer:
<h2>5.53 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>5.53 J</h3>
Hope this helps you
Answer:
heat and power
Explanation:
is the simultaneous production of electricity and heat both of which are used
Answer:
The half-life is 
Explanation:
Using the decay equation we have:

Where:
- λ is the decay constant
- A(0) the initial activity
- A is the activity at time t
We know the activity decrease by a factor of two in a one hour period (t = 1 h), it means that


Taking the natural logarithm on each side we have:


Now, the relationship between the decay constant λ and the half-life t(1/2) is:




I hope it helps you!