Answer:
R=4.22*10⁴km
Explanation:
The tangential speed
of the geosynchronous satellite is given by:

Because
is the circumference length (the distance traveled) and T is the period (the interval of time).
Now, we know that the centripetal force of an object undergoing uniform circular motion is given by:

If we substitute the expression for
in this formula, we get:

Since the centripetal force is the gravitational force
between the satellite and the Earth, we know that:
![F_g=\frac{GMm}{R^{2}}\\\\\implies \frac{GMm}{R^{2}}=\frac{4m\pi ^{2}R}{T^{2}}\\\\R^{3}=\frac{GMT^{2}}{4\pi^{2}} \\\\R=\sqrt[3]{\frac{GMT^{2}}{4\pi^{2}} }](https://tex.z-dn.net/?f=F_g%3D%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%5C%5C%5C%5C%5Cimplies%20%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%3D%5Cfrac%7B4m%5Cpi%20%5E%7B2%7DR%7D%7BT%5E%7B2%7D%7D%5C%5C%5C%5CR%5E%7B3%7D%3D%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%5C%5C%5C%5CR%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%7D)
Where G is the gravitational constant (
) and M is the mass of the Earth (
). Since the period of the geosynchronous satellite is 24 hours (equivalent to 86400 seconds), we finally can compute the radius of the satellite:
![R=\sqrt[3]{\frac{(6.67*10^{-11}Nm^{2}/kg^{2})(5.97*10^{24}kg)(86400s)^{2}}{4\pi^{2}}}\\\\R=4.22*10^{7}m=4.22*10^{4}km](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%286.67%2A10%5E%7B-11%7DNm%5E%7B2%7D%2Fkg%5E%7B2%7D%29%285.97%2A10%5E%7B24%7Dkg%29%2886400s%29%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%7D%5C%5C%5C%5CR%3D4.22%2A10%5E%7B7%7Dm%3D4.22%2A10%5E%7B4%7Dkm)
This means that the radius of the orbit of a geosynchronous satellite that circles the earth is 4.22*10⁴km.
Answer:
Both are only physical changes
Explanation:
A physical change is a change that does not involve or alter the chemical composition of the substances involved. Physical changes form no new substance and can be easily separated into individual constituents. Example of physical changes are change in state, boiling, melting etc.
According to this question, two processes were given as follows:
1. mixing chocolate syrup into milk
2. rain forming in a cloud
These two processes are similar in the sense that they are both examples of physical changes.
Answer:
1)
is<u> positive.</u>
<u></u>
2) 
Explanation:
<h2><u>
Part 1:</u></h2>
<u></u>
The charged rod is held above the balloon and the weight of the balloon acts in downwards direction. To balance the weight of the balloon, the force on the balloon due to the rod must be directed along the upwards direction, which is only possible when the rod exerts an attractive force on the balloon and the electrostatic force on the balloon due to the rod is attractive when the polarities of the charge on the two are different.
Thus, In order for this to occur, the polarity of charge on the rod must be positive, i.e.,
is <u>positive.</u>
<u></u>
<h2><u>
Part 2:</u></h2>
<u></u>
<u>Given:</u>
- Mass of the balloon, m = 0.00275 kg.
- Charge on the balloon,

- Distance between the rod and the balloon, d = 0.0640 m.
- Acceleration due to gravity,

In order to balloon to be float in air, the weight of the balloom must be balanced with the electrostatic force on the balloon due to rod.
Weight of the balloon, 
The magnitude of the electrostatic force on the balloon due to the rod is given by

is the Coulomb's constant.
For the elecric force and the weight to be balanced,

Answer:
h=15.27m
Explanation:
Since at maximum height the vertical velocity must be null it's better to use the formula:

We will use this formula for the vertical direction, choosing the upward direction as the positive one, so we have:

or

which for our values is:

Theoretically, 35 x 18 = 630